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Assessing the added predictive ability 
of a metabolic syndrome severity score 
in predicting incident cardiovascular disease 
and type 2 diabetes: the Atherosclerosis Risk 
in Communities Study and Jackson Heart Study
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Abstract 

Background:  The severity of the metabolic syndrome (MetS) predicts future coronary heart disease (CHD) and 
diabetes independent of the individual MetS components. Our aim was to evaluate whether MetS severity conferred 
additional discrimination to existing scoring systems for cardiovascular disease (CVD) and diabetes risk.

Methods:  We assessed Cox proportional hazard models of CHD- and diabetes risk among 13,141 participants of the 
Atherosclerosis Risk in Communities Study and the Jackson Heart Study, using the Framingham Risk Calculator, the 
American Heart Association’s Atherosclerotic CVD calculator, the American Diabetes Association diabetes risk score 
and an additional diabetes risk score derived from ARIC data. We then added a MetS-severity Z-score to these models 
and assessed for added risk discrimination by assessing Akaike information criterion, c-statistic, integrated discrimina-
tion improvement (IDI) and continuous net reclassification improvement (NRI).

Results:  The MetS severity score appears to add to the predictive ability of individual CHD and diabetes risk scores. 
Using the IDI, MetS improved risk prediction for diabetes but not CHD risk. In all 4 scoring systems, MetS severity had a 
significant non-event NRI, improving the ability to exclude individuals without events. Assessing interactions between 
risk scores and MetS severity revealed that MetS severity was more highly associated with disease risk among those in 
the lowest quintiles of risk score, suggesting that MetS was particularly able to identify risk among individuals judged 
to be of low risk by existing algorithms.

Conclusions:  Mets severity improved prediction of diabetes more so than CHD. Incorporation of multiple risk predic-
tors into electronic health records may help in better identifying those at high disease risk, who can then be placed 
earlier on preventative therapy.
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Background
The continued need for tools to identify risk for future 
cardiovascular disease (CVD) and Type 2 diabetes mel-
litus (T2DM) has driven the design of risk-prediction 
scoring systems, which can then be used to identify and 
motivate high-risk patients toward preventative treat-
ments and lifestyle improvement. These predictive scor-
ing systems include the Framingham calculator from 
D’Agostino et  al. [1, 2] and the more recent atheroscle-
rotic cardiovascular disease (ASCVD) Pooled Cohort 
Equations scoring system by Goff et  al. [3] (Table  1). 
These systems can be used clinically to detect future 
CVD risk, with respectable c statistics of 0.76–0.79 for 
the Framingham calculator [1] and 0.71–0.82 for the 
ASCVD [3].

Scoring systems for risk of future T2DM include that 
of Schmidt et al. [4], based on prospective data from the 
Atherosclerosis Risk in Communities Study (ARIC). A 
predictive score for risk of current T2DM by Bang et al. 
[5] has been endorsed by the American Diabetes Asso-
ciation (ADA) [6], potentially because of its reliance on 
a relatively small number of variables and no need for 
blood testing (Table  1). These T2DM scoring systems 
detect T2DM risk with an area-under-the-curve of 0.80 
for the Schmidt equation [4] 0.74 for the Bang equation 
[6].

Another notable cardiovascular and diabetes risk pre-
dictor is the metabolic syndrome (MetS), a cluster of 
CVD risk factors including central obesity, high blood 
pressure, high fasting triglycerides, low HDL cholesterol 

fasting glucose [7]. These factors are associated with 
insulin resistance and appear to be driven by underlying 
processes of adipocyte dysfunction, systemic inflamma-
tion and oxidative stress [8]. Using traditional criteria, 
MetS was classified according to the presence of at least 
three abnormalities in the MetS components [7]. The 
value of MetS as a concept had been questioned, with 
several studies demonstrating that the presence of MetS 
by traditional criteria did not provide additional CVD 
or T2DM prediction beyond that conveyed by the indi-
vidual MetS components [9–11]. We recently formulated 
a sex- and race/ethnicity-specific MetS severity Z-score 
with differential weighting of the individual MetS com-
ponents based on how these components correlated 
together by sex- and racial/ethnic sub-group [12, 13]. 
While this MetS severity score was not specifically for-
mulated to be a risk predictor, we demonstrated that this 
score remained significantly associated with long-term 
risk for coronary heart disease (CHD) [14, 15] and T2DM 
[16, 17], even in models that included the individual MetS 
components [15, 17]—contributing to the notion that the 
presence of the underlying processes driving MetS may 
confer additional risk for CHD and T2DM.

Current risk scores do not incorporate a component 
estimating the presence of MetS, beyond incorpora-
tion of some of its individual risk factors. We hypoth-
esized that adding MetS severity to common risk scores 
for CVD and T2DM would increase their power to 
predict risk. The goal of this study was to assess (1) 
whether MetS severity remained a significant predictor 

Table 1  Predictors included in existing CVD and T2DM risk scores

Predictors CVD T2DM

Framingham (D’Agostino 
et al.)

ASCVD (Goff et al.) Bang et al. Schmidt et al.

Age X X X X

Sex X X X

Race/ethnicity X

Weight/height X X

Waist circumference X

HDL X X

Total cholesterol X X

Hypertension X X

SBP, treated X X

SBP, untreated X X X

Smoking X X

Diabetes X X

Gest. diabetes X

Family history of diabetes X X

Physical activity X

Fasting glucose X
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of long-term CHD and T2DM risk, even when assessed 
alongside existing risk scores and (2) whether the addi-
tion of MetS to these scores improved their ability to 
predict CHD risk. We utilized longitudinal data from 
black and white participants of the Atherosclerosis Risk 
in Communities (ARIC) study and the Jackson Heart 
Study (JHS) with up to 20-year follow-up to assess for 
optimizing of risk via use of MetS severity.

Methods
Study sample
The study sample consisted of participants from two 
large cohort studies: ARIC and the Jackson Heart Study 
(JHS). This study and/or its analysis was approved by 
the Institutional Review Boards of the University of 
Florida, the University of Virginia, and the study sites 
for the ARIC; all participants provided informed con-
sent. ARIC started in 1987 as a large community-based 
epidemiological cohort study of mostly white and Afri-
can–American participants. A total of 15,792 individu-
als aged 45–64  years old were recruited for four visits 
across four US sites. JHS started in 2000 as an expan-
sion of the ARIC study site in Jackson, MS, with three 
visits, focusing on African Americans. JHS recruited 
5301 African Americans aged 21–95  years old, among 
which 1626 participants had been followed as part of 
ARIC. For these 1626 participants, we used data from 
their ARIC follow-up and not their JHS follow-up. For 
the purposes of this analysis, we excluded the partici-
pants who self-identified as a race other than white or 
African American (n = 46). We also excluded partici-
pants with baseline (Visit 1) T2DM (n = 2485), CHD 
(n = 973), or stroke (n = 393), and participants who had 
missing baseline data on MetS components (n = 792), 
who had non-fasting laboratory studies (n = 507), and/
or those without follow-up data regarding T2DM out-
comes (n = 2992). Eventually, data from 13,141 par-
ticipants were used for this study. Previous reports 
have published details of procedures for blood collec-
tion and analysis for lipids [18] and serum glucose [19]. 
Briefly, participants fasted overnight for 12  h before 
the examination. Phlebotomy was performed, blood 
sample was centrifuged and serum was sent to a cen-
tral laboratory for examination. Triglycerides were 
measured by enzymatic methods, and HDL cholesterol 
was measured after dextran-magnesium precipitation. 
LDL cholesterol was calculated using the Friedewald 
equation. Serum glucose was measured by the hexoki-
nase-6 phosphate dehydrogenase method [9]. BP was 
examined in sitting position with a random-zero sphyg-
momanometer—of the three measurements performed, 

the average of the last two measurements were used for 
analysis.

Study outcomes
Time to incident CHD
Incident CHD was determined from adjudicated out-
comes using standard ARIC and JHS protocols and 
included fatal or nonfatal hospitalized myocardial infarc-
tion, fatal CHD, silent myocardial infarction identified by 
electrocardiography, or coronary revascularization [19, 
20]. The study outcome time to incident CHD events was 
defined as the minimum number of days between the 
baseline visit and either the first event, death from other 
causes, last contact, or Dec 31, 2011. Given the focus on 
evaluating the performance of risk scores that were spe-
cifically designed to estimate 10-year risk of CHD, we 
calculated prediction statistics (described below) of these 
overall survival models with respect to 10-year risk.

T2DM
Incident T2DM was determined slightly differently for 
the ARIC and JHS participants due to differences in vari-
able specifications. In ARIC, participants were defined as 
having T2DM if they reported that a physician had told 
them they had diabetes, had a fasting glucose ≥ 126 mg/
dL or a non-fasting glucose ≥ 200  mg/dL, or if they 
reported they were taking insulin or oral hypoglycemic 
medications [4]. In JHS, participants were defined as 
having T2DM if they had a fasting glucose ≥ 126  mg/
dL or an HbA1c ≥ 6.5% or if they took a diabetic medi-
cation within 2 weeks prior to the clinic visit [21]. Inci-
dent T2DM was determined for Visits 2–4 separately or 
ARIC participants and for Visits 2–3 separately for JHS 
participants (as we excluded those with T2DM at Visit 1). 
The study outcome T2DM was defined as a dichotomized 
variable, with “Yes” being having T2DM during any Visits 
and “No” being not having T2DM for all Visits, consider-
ing a follow-up time of 10 years.

Predictors: risk scores
Existing CVD and T2DM risk scores
We utilized two existing CVD risk scoring algorithms 
based on Cox regressions for model fitting (Table  1). 
Using data from the Framingham Heart Study, 
D’Agostino et  al. derived a sex-specific multivariable 
risk factor algorithm for assessing 10-year general CVD 
risk [1, 2]. The 2013 American College of Cardiology/
American Heart Association Guideline on the Assess-
ment of Cardiovascular Risk (Goff et al. [3]) subsequently 
published the ASCVD, a sex- and race-specific 10-year 
ASCVD risk estimation algorithm derived using exten-
sive data from several large, racially and geographically 
diverse cohort studies, including the Framingham Heart 
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Study, ARIC, the Cardiovascular Health Study, and the 
Coronary Artery Risk Development in Young Adults 
(CARDIA) study.

We also utilized two existing T2DM risk scoring algo-
rithms based on logistic regression (Table 1). Bang et al. 
published a risk scoring algorithm for undiagnosed dia-
betes developed using the National Health and Nutrition 
Examination Survey (NHANES) data [5]. The Bang risk 
algorithm was later adopted by the ADA as the Type 2 
diabetes risk test [6]. The other T2DM risk algorithm was 
developed using ARIC data by Schmidt et al. [4]. For each 
of these four existing CVD and T2DM risk scores, we 
converted the scores in the analytic sample to Z-scores 
for use in the final predictive models.

MetS severity score
We calculated the MetS severity Z-scores at baseline 
for the study participants using sex- and race/ethnicity-
based formulas [12]. The MetS severity score was derived 
from the five traditional MetS components (WC, tri-
glycerides, HDL-cholesterol, systolic BP, fasting glucose) 
using a factor analysis approach. Because of differences 
in traditional MetS criteria by race/ethnicity [22–24], 
confirmatory factor analysis was performed as previ-
ously described [12] to determine the weighted contri-
bution of each component to a latent MetS factor on a 
sex- and race/ethnicity-specific basis, using the National 
Health and Nutrition Examination Survey (NHANES) 
data for adults aged 20–64 years. For each of the six sub-
groups based on sex and race/ethnicity (non-Hispanic-
white, non-Hispanic-black and Hispanic), factor loadings 
from the five MetS components were determined and 
used to generate equations for computing a standard-
ized MetS severity score for each sub-group (http://mets.
healt​h-outco​mes-polic​y.ufl.edu/calcu​lator​/). The MetS 
severity score was shown to correlate with other MetS 
risk markers, such as insulin [25] and adiponectin [25], 
and is predictive of long-term risk of CVD [14, 15] and 
T2DM [16, 17]. We recently demonstrated that the MetS 
severity score was predictive of future CHD and T2DM 
events above and beyond the individual MetS compo-
nents alone [15, 17]. Because of the importance of insulin 
resistance in T2DM and CVD, we additionally assessed 
the homeostasis model of insulin resistance (HOMA-IR) 
as a risk predictor. HOMA-IR was calculated as: HOMA-
IR = (fasting insulin × fasting glucose)/405, where insulin 
is measured in mU/L and glucose is in mg/dL.

Statistical analysis
Using data from the combined ARIC and JHS cohorts, 
we used Cox proportional hazards models to assess the 
association of existing CVD risk scores and MetS with 
the time to incident CVD. We used logistic regression 

models to assess the association of the existing T2DM 
risk scores and MetS with the incidence of T2DM. To 
explore the effect of adding MetS on model performance, 
we used a series of nested models for both Cox and logis-
tic regressions. The predictors in the nested models were: 
(1) risk score only (Model A); (2) MetS severity only 
(Model B); (3) risk score and MetS severity (Model C); 
and (4) risk score, MetS severity, and risk score by MetS 
severity interaction (Model D). For both outcomes, we 
also fitted sex- and race-specific models and reported 
associated odds ratios or hazard ratios. We controlled 
for study site in all models (four ARIC sites plus JHS). 
When presenting hazard ratios (HR’s) and odds ratios 
(OR’s), we standardized the Framingham, ASCVD, and 
Schmidt risk scores to facilitate comparability with the 
HR’s and OR’s associated with the MetS severity Z-score. 
Given the ordinal nature of the Bang diabetes score, we 
did not standardize for this comparison. Our primary 
interest was in the model prediction statistics described 
below and how these risk scores would perform in clini-
cal settings; for these evaluations we used the risk scores 
on their original scale. All statistical analyses were per-
formed using SAS version 9.4 (SAS, Cary, North Caro-
lina, USA).

Model performance was evaluated using the follow-
ing statistics: Akaike information criterion (AIC), c sta-
tistic, integrated discrimination improvement (IDI), and 
continuous net reclassification improvement (NRI). The 
AIC and c statistic were computed for all models. The 
IDI and continuous NRI were computed for comparing 
Model C to Model A, and Model D to Model A. The c 
statistic, and IDI are measures of discrimination, which 
is a model’s ability to distinguish between subjects with 
and without the disease. The c statistic is the estimated 
area under the Receiver Operating Characteristics (ROC) 
curve. The IDI equals the difference in discrimination 
slopes between the model with the additional predictor 
and the model without [26], or the difference in the pro-
portion of variance explained by the two different models 
[27]. The continuous NRI is a measure of improvement in 
reclassification, defined as the sum of two differences in 
proportions resulting from the addition of a new predic-
tor: (1) proportion of individuals with events who have 
an increase in predicted risks minus the proportion with 
a decrease (event NRI), and (2) proportion of individu-
als without events who have a decrease in predicted risks 
minus the proportion with an increase (non-event NRI). 
Extensions of the c statistic, IDI, and NRI in the context 
of survival data have been previously reported [28–30]. 
While all available follow-up data for CVD was used in 
our models, we calculated these statistics to evaluate pre-
dictive performance at 10  years. Performance statistics, 
except for the AIC, were computed using validated SAS 

http://mets.health-outcomes-policy.ufl.edu/calculator/
http://mets.health-outcomes-policy.ufl.edu/calculator/
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macros available from: http://ncook​.bwh.harva​rd.edu/
sas-macro​s.html. Finally, variance inflation factors (VIF’s) 
were computed to assess the degree of collinearity when 
including MetS and other predictive scores in the same 
model, with VIF’s greater than 10 representing severe 
collinearity.

Results
Participant characteristics
We summarized the characteristics of the 13,141 study 
participants at baseline by sex and race in Table  2. The 
average age of the participants was 53.0 (SD = 7.1) years 
old. The incidence of CVD at 10  years was the high-
est among white men (24.6%), compared to 9.4% among 
white women, 10.3% among black men, and 5.7% among 
black women. Overall, the incidence of CVD at 10 years 
was 13.2% for all the participants. The incidence of 
T2DM at 10 years was 12.0% overall and differed by sex 
and race. Black men (16.4%) and women (16.5%) had 
a higher incidence of T2DM, while the rate was 11.7% 
among white men and 7.9% among white women.

CVD risk prediction with CVD risk scores and MetS
Results from adding MetS severity score in addition 
to the Framingham and ASCVD risk score for pre-
dicting future CHD were summarized in Table  3. The 
CVD risk scores (Model A) and the MetS severity 
score (Model B) by themselves were significant predic-
tors for future CVD, across the sex and race groups, 
with an overall HR’s of 2.38 per normalized SD unit 
increase in Framingham score, 2.68 per normalized SD 
unit increase in ASCVD and 1.77 per standard devia-
tion unit increase in MetS severity. When included in 
the same model (Model C), the Framingham score but 

not MetS severity was a significant predictors for future 
CHD. Both the ASCVD score and MetS severity were 
significant predictors for future CHD when included in 
the same model.

Regarding model performance, there appeared to be 
mixed indicators of added distinguishing ability when 
adding MetS severity score to Framingham. In moving 
from Model A to Model C, there was no change in the 
c statistic, suggesting the distinguishing ability remaining 
unchanged with a non-significant IDI. Conversely, the 
continuous NRI was 0.16 (95% CI 0.08, 0.23), indicating 
a significant increase in the model’s ability to correctly 
classify individuals without CVD events (non-event 
NRI = 0.10; 95% CI 0.08, 0.11) when adding MetS sever-
ity. Similar statistics were observed comparing Model 
D (that included the interaction between the risk score 
and MetS) to Model A. No major differences in patterns 
of discrimination and reclassification performance were 
observed between sex and race groups.

We observed similar results when adding MetS sever-
ity score to the ASCVD prediction model. There was no 
change in c statistic from Model A to Models C and D. 
Comparing Model C to Model A, the IDI was not signifi-
cant, while the continuous NRI was 0.15 (95% CI 0.05, 
0.23), suggesting a significant increase in reclassifica-
tion performance. Comparing Model D to Model A, the 
IDI was not significant, while the continuous NRI was 
0.38 (95% CI 0.30, 0.45), again indicating an increase in 
reclassification performance. Among the sex and race 
groups, we observed no major differences in patterns of 
discrimination and reclassification performance. Again, 
the continuous NRI revealed that adding MetS severity 
improved the ability to correctly classify individuals with-
out CHD events.

Table 2  Characteristics of study participants

a   All statistics are reported as mean (SD) unless otherwise noted

Characteristica Overall White men White women Black men Black women

n 13,141 3905 4721 1760 2755

Age 53.0 (7.1) 54.5 (5.7) 53.8 (5.6) 51.0 (9.0) 50.8 (8.9)

BMI 27.8 (5.7) 27.2 (3.8) 26.1 (5.0) 28.3 (5.4) 31.4 (7.2)

Waist circumference 95.9 (13.7) 98.9 (10.0) 91.5 (13.6) 97.4 (13.8) 98.1 (16.3)

SBP 120.0 (17.5) 119.2 (15.3) 116.0 (17.2) 126.4 (18.4) 123.6 (18.3)

HDL 52.6 (16.6) 43.6 (12.2) 58.9 (16.8) 48.6 (15.1) 57.1 (16.1)

Triglycerides 118. 5 (73.8) 138.6 (84.6) 119.1 (68.3) 109.5 (77.8) 95.0 (53.1)

Glucose 96.9 (9.7) 100.8 (8.8) 96.6 (8.6) 95.2 (10.3) 93.2 (10.5)

MetS severity score 0.0 (0.8) 0.3 (0.7) − 0.1 (0.8) − 0.1 (0.7) − 0.0 (0.8)

Framingham predicted 10-year CVD risk 0.101 (0.086) 0.150 (0.091) 0.061 (0.049) 0.152 (0.106) 0.069 (0.058)

ASCVD predicted 10-year risk 0.057 (0.053) 0.081 (0.052) 0.029 (0.027) 0.095 (0.062) 0.048 (0.057)

Incident CVD at 10 years; n (%) 1740 (13.2%) 959 (24.6%) 444 (9.4%) 181 (10.3%) 156 (5.7%)

Incident T2DM at 10 years, n (%) 1573 (12.0%) 456 (11.7%) 375 (7.9%) 288 (16.4%) 454 (16.5%)

http://ncook.bwh.harvard.edu/sas-macros.html
http://ncook.bwh.harvard.edu/sas-macros.html
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T2DM risk prediction with T2DM risk scores and MetS
Results from adding MetS severity score in addition to 
the Bang and Schmidt risk score for predicting incident 
T2DM were summarized in Table  4. The T2DM risk 
scores (Model A) and MetS severity score (Model B) were 
significant predictors for T2DM by themselves, across 
the sex and race groups. MetS severity was a stronger 
predictor than the Bang score. When included in the 
same model (Model C), both the Bang score and MetS 
severity were significant predictors for T2DM, except 
in models for women where the Bang score was not sig-
nificant. In the overall combined model, the Schmidt 
risk score but not MetS severity was a significant predic-
tors for future T2DM when included in the same model, 
except in the models for black men and women, in which 
MetS was more strongly associated and in the model for 
white men where the MetS severity score was protective.

When adding MetS severity score as a new predictor 
in addition to the Bang score (from Model A to Model 
C), there was a significant increase in the c statistic, sug-
gesting added discrimination. The c statistic for Mod-
els A and C were 0.69 (95% CI 0.68, 0.71) and 0.78 (95% 
CI 0.77, 0.79), respectively. Similarly, the comparison of 
Model C with Model A, for which the IDI was 0.07 (95% 
CI 0.06, 0.08), suggests a large increase in MetS sever-
ity’s ability to distinguish participants with and without 
T2DM relative to the Bang score. The continuous NRI 
was 0.68 (95% CI 0.63, 0.72), suggesting a significant 
increase in model’s ability to correctly classify individu-
als with or without T2DM. The performance of Model D 
was similar to that of Model C.

We observed smaller increases in discrimination and 
reclassification performance when adding MetS severity 
score to the Schmidt score for predicting incident T2DM 
(Table 4). Comparing Model C to Model A, the c statistic 
remained unchanged, and the IDI was statistically non-
significant (− 0.00; 95% CI − 0.00, 0.00). However, the 
continuous NRI was 0.16 (95% CI 0.12, 0.22), indicating 
a significant increase in the model’s ability to correctly 
classify individuals with or without T2DM when adding 
MetS severity. Model D had a better performance than 
Model C, with the continuous NRI being 0.47 (95% CI 
0.41, 0.52). Across all analyses of T2DM models (Table 4), 
there were no major differences in model performance 
among the sex and race groups.

HOMA‑IR and risk prediction
As a risk predictor, HOMA-IR was not as strongly linked 
to future CVD or T2DM as was MetS in individual mod-
els (Additional file  1: Tables S1 and S2). In the com-
bined models, HOMA-IR remained linked to future 
CVD to a similar extent as seen for MetS-Z. For T2DM 

models, HOMA-IR remained linked to future T2DM 
when assessed alongside both diabetes scores.

Interactions between Risk Scores and MetS
In the overall and sex/race specific models for predict-
ing CHD and T2DM, we also fitted the interaction term 
(i.e., how the relationship between MetS severity a future 
disease diagnosis varied by the level of the comparator 
risk score) between the respective disease risk score (by 
quintiles) and MetS severity score (Model D). In each 
of the four overall prediction models (2 for CVD and 2 
for T2DM), the risk score by MetS interaction was sta-
tistically significant, demonstrating that MetS severity 
performed differently in risk assessment depending on 
the underlying score. We summarized the interaction 
plots from the four models in Fig. 1. As seen in Fig. 1a, 
b, the hazard ratios of MetS assumed an s-shape across 
the CVD risk quintiles based on either the Framingham 
or ASCVD score. MetS was a stronger predictor for CHD 
among individuals with the lowest CVD risk (quintile 1). 
Then, it became a relatively weaker predictor for CHD 
among individuals with higher CVD risk (quintiles 2 and 
3), before becoming a stronger predictor among individ-
uals with higher CVD risk in quintile 4. As seen in Fig. 1c, 
d, the odds ratios of MetS differed across the T2DM risk 
quintiles. In the model with the Bang score, MetS was a 
stronger predictor for T2DM for the middle risk quin-
tile, but a weaker predictor among individuals with the 
highest T2DM risk. In the model with the Schmidt score, 
MetS was a stronger predictor for T2DM for the middle 
risk quintile, but a weaker predictor among individuals 
with higher T2DM risk (quintiles 4 and 5).

Discussion
We found that a MetS severity Z-score, when added to 
predictive models alongside existing T2DM risk scores, 
consistently improved the models’ discrimination perfor-
mance for future T2DM. This contrasted with the MetS 
severity when applied to CHD events: while the MetS 
severity score remained significantly associated with 
future CHD when added to models with the ASCVD 
risk score, this addition did not result in a consistent 
improvement in the prediction models’ discrimination 
performance and overall performed best at reclassify-
ing individuals without CHD events. We had previously 
demonstrated that a MetS severity Z-score was associ-
ated with CHD and T2DM outcomes, even in models 
that included the individual MetS components [15, 17]; 
however, when tested in models without the individual 
components, this association was much stronger when 
comparing the 4th vs. the 1st quartile of MetS severity 
for future T2DM (HR = 17.4 over 8 years) than with CHD 
(HR = 4.0 over 25 years follow-up) [15, 17]. The current 
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results reveal that the same hierarchy exists when adding 
MetS severity for existing scores—that the utility in add-
ing the MetS severity score to improve clinical accuracy 
is much clearer for T2DM than for CVD.

It is important to note that the existing CVD- and 
T2DM risk scoring systems that we assessed in the cur-
rent study were formulated specifically to predict long-
term CVD events or diabetes diagnosis using known risk 
factors (but without incorporating an estimate of MetS 
beyond its individual components) [1, 3–5]. By contrast, 
the MetS severity Z-score was formulated not based on 
CVD or T2DM risk per se but on how the individual MetS 
variables cluster together—potentially as an estimate of 
the pathological processes underlying MetS, such as adi-
pocyte cellular dysfunction, systemic inflammation, and 
oxidative stress [8]. Nevertheless, adding the MetS sever-
ity score to existing T2DM risk scores in incident diabe-
tes models revealed that this estimate of MetS severity 
increased the discrimination performance of models, 
especially for the score from Bang et  al. In the predic-
tion models for both CVD and T2DM outcomes, adding 

MetS severity score to existing risk scores increased the 
NRI assessment of the models’ ability to correctly reclas-
sify individuals with or without the disease. This suggests 
that the MetS score has identified risk associated with the 
way that these individual components are clustered—and 
that this MetS factor is distinct from risk associated with 
the existing T2DM scores.

Both of the CVD scoring systems that we evaluated 
had similar risk prediction for CHD that exceeded that 
of the MetS severity Z-score. This is not surprising given 
the inclusion in both of these CVD scores of smoking and 
LDL cholesterol—clearly important non-MetS-related 
risk factors that themselves carry strong associations 
with future CHD. Nevertheless, MetS severity predictive 
ability was strongest among individuals who were in the 
lowest risk category based on the CVD scoring systems—
suggesting a role for MetS severity as a follow-up test 
among individuals previously identified as low risk by the 
scoring systems themselves. This was true for the Bang 
T2DM risk score also as well as for those in the second 
and third quintiles of the Schmidt score.
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Fig. 1  Interaction between risk scores and MetS severity score by disease risk score quintiles. Hazard ratios (HR) or odds ratios (OR) for each MetS 
severity score Z-score standard deviation unit by quintiles of risk score for cardiovascular disease (CVD) (a Framingham risk score; b ASCVD score) 
and Type 2 diabetes mellitus (T2DM) (c Bang score (Ref. [5]); d Schmidt score (Ref. [4])). For each of the comparator risk scores, there was a significant 
interaction between MetS severity and future disease risk depending on the quintile of the comparator score, with increasing MetS severity 
exhibiting higher hazard ratios (HR) for future CHD among individuals in the lowest quintile of CVD risk according to the Framingham and ASCVD 
risk and with increasing MetS severity exhibiting higher HR’s for future diabetes among individuals in the middle quintiles of diabetes risk according 
to the Bang and Schmidt risk scores. All models controlled for study site
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Despite the availability of web-based calculators, clini-
cal use of scoring systems such as these remains limited 
by the time required to calculate the score on a per-
patient basis. Thus, addition of an extra layer of com-
plexity of an additional factor such as MetS severity is at 
first intimidating. Nevertheless, automated calculation 
of such scores using the electronic health record (EHR) 
could facilitate wider use toward identification of high-
risk patients. In addition to laboratory values, smok-
ing status is widely available as a codified item through 
meaningful-use programs. Similar risk-identification 
algorithms are already widely utilized in EHR systems. 
Our data suggest the potential that MetS severity could 
be calculated automatically for use in such systems.

MetS has strong associations with insulin resistance, 
which itself is linked to risk for T2DM [31] and CVD 
[32]. It is thus perhaps not surprising that HOMA-IR 
[33] also had associations with these outcomes. Unfortu-
nately, HOMA-IR has had difficulties in clinical applica-
tion, as it relies on measurement of insulin. Insulin still 
does not have a standardized laboratory approach, with 
measured outcome varying significantly between labora-
tory assays. However, in research studies using a single 
insulin assessment technique, levels of insulin are asso-
ciated with these outcomes of interest. None of the risk 
scores that we assessed here included insulin measure, 
potentially explaining its persistent association here.

This study had multiple limitations. The cohorts rep-
resented here were initially enrolled 12–29 years ago, at 
a time when many current CVD treatments and man-
agement approaches were not available or not in com-
mon use. Thus, the precise predictive ability represented 
here is likely not generalizable to modern populations. 
In addition, the definition of Type 2 diabetes differed 
between the two cohorts, with JHS including elevated 
HbA1c as an indicator of diabetes—potentially identify-
ing more individuals who had previously-unidentified 
diabetes but may have had normal fasting blood glucose. 
However, we adjusted all of these analyses for study site; 
thus, if there were any differences in the relationship 
between risk score and outcome according to the method 
of diabetes diagnosis, this would have been accounted. In 
this analysis we did not examine the relative performance 
of MetS severity in predicting future disease among the 
myriad other risk scores available for CVD and T2DM 
outcomes. To address our primary aims of examining the 
utility of MetS severity in predicting future disease above 
and beyond existing risk scores, we selected some of 
the more prominently studied and used risk score algo-
rithms. Some of these risk equations (the ASCVD and 
the Schmidt prediction of T2DM) utilized ARIC in their 
development; thus, comparisons between these and other 
scores themselves may not be appropriate. However, our 

primary goal was to evaluate the added value of risk pre-
diction associated with MetS severity, and using popular 
equations was an initial step in this process. While it is 
plausible major differences in our conclusions would 
result if we examined other algorithms, given the similar-
ity in the composition of most of the algorithms, we sus-
pect similar findings regarding our hypotheses regarding 
MetS severity and prediction of future disease. In addi-
tion, there are participants with less than 10  years of 
follow-up, particularly with respect to reliable T2DM 
diagnosis, which would impact the predictive ability of 
the 10-year risk scores. Nevertheless, any associated bias 
would not differ among the scores themselves, nor would 
the ability to determine if MetS severity adds any predic-
tive benefit.

Conclusions
We found that adding MetS severity—potentially as a 
marker of underlying metabolic disarray—improved the 
predictive performance of risk scores for future T2DM 
much more consistently than for CVD. These data are 
significant in providing the potential to strengthen cur-
rent scoring systems via the addition of an estimate of 
MetS severity—potentially adding accuracy to the iden-
tification of individuals at high disease risk, who can then 
be more appropriately targeted for treatment.
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