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The macrophage at the intersection of immunity
and metabolism in obesity
M Constantine Samaan

Abstract

Obesity is a worldwide pandemic representing one of the major challenges that societies face around the globe.
Identifying the mechanisms involved in its development and propagation will help the development of
preventative and therapeutic strategies that may help control its rising rates.
Obesity is associated with chronic low-grade inflammation, and this is believed to be one of the major contributors
to the development of insulin resistance, which is an early event in obesity and leads to type 2 diabetes when the
pancreas fails to keep up with increased demand for insulin. In this review, we discuss the role of macrophages in
mediation of inflammation in obesity in metabolic organs including adipose tissue, skeletal muscle and liver. The
presence of immune cells at the interface with metabolic organs modulates both metabolic function and
inflammatory responses in these organs, and may provide a potential therapeutic target to modulate metabolic
function in obesity.
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Introduction
More than one billion people around the world are
overweight or obese, and one in eight of those is a child
[1]. Another worldwide pandemic is type 2 diabetes,
with around 350 million people affected[2] and this is
mostly related to obesity. The burdens of obesity and
diabetes with their co-morbidities on the individual,
family, community, health care systems, and society at
large is one of the biggest challenges that societies face
around the globe[3]. Understanding the mechanisms
involved in the development of the two conditions paves
the way for design of preventative and therapeutic stra-
tegies that may stem their progress.
In this review, we highlight the role of the macro-

phage, an immune cell, in the development of obesity-
mediated inflammation. We review the evidence for
the intersection of nutrient and cytokine sensing in
immune and metabolic organs, and assess the evidence
for presence and actions of macrophages in metabolic
organs.

Nutrient sensing, cytokine signaling and inflammation in
obesity
It is well established that obesity is associated with
inflammation[4-15], but this inflammation is different
from that seen in infection or autoimmunity. First, obe-
sity-associated inflammation does not fulfill the usual
description of acute inflammation with redness, heat,
swelling, and pain but follows a more chronic and low-
grade course[16-19]. Second, inflammation in obesity is
a systemic process that affects many organs, but may
begin in one or more organs. Inflammation starts in adi-
pose tissue as it expands with excess fat and caloric
intake, and involves activation of inflammatory pathways
in cells by nutrient-sensing and cytokine signaling.
Nutrient sensing occur via pattern recognition receptors
including membrane-based innate immune receptors
known as toll-like receptors 2 and 4 (TLR2 & TLR4),
and intracellular pathogen sensing NOD-like receptors
[20-24]. These receptors were originally thought to be
involved only in pathogen sensing, but recently were
found to sense fatty acids.
In addition, cytokines are produced in response to

inflammatory stimuli from different organs, and can
act in an autocrine, paracrine or endocrine fashion
[25-30]. Fatty acids and cytokines converge to activate
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the same downstream inflammatory pathways. The
activation of these pathways leads to production of
transcription factors that enter the nucleus and acti-
vate inflammatory cytokine gene expression and cyto-
kine production, leading to propagation of
inflammation[31-34](Figure 1).
Recently, an intriguing mechanism was proposed as

an explanation for obesity. CNS deletion of Toll-like
receptor 4(TLR4) adaptor MyD88 protected mice
from high fat diet-mediated obesity. Intracerebroven-
tricular administration of saturated fatty acid palmi-
tate did not elicit leptin or insulin resistance and did
not increase hypothalamic inflammatory cytokines.
This indicates that high fat diet in part acts centrally
even before meaningful weight gain to trigger leptin
and insulin resistance. This leads to dysregulation of

anorexigenic effects of leptin and insulin, and initia-
tion and progression of obesity[35]. Hypothalamic
inflammation as a starting point for obesity is an
interesting mechanism that requires further study
[36,37].

Immune cells in metabolic organs drive inflammation in
obesity
While many mechanisms leading to inflammation in
obesity are not completely understood, it is clear that
the interaction between immune and metabolic cells
initiates and propagates the inflammatory response.
Adipose tissue expansion in obesity outpaces its blood

supply, resulting in adipose tissue hypoxia and activation
of inflammatory responses, with production of factors
including Hypoxia Inducible Factor-1a [HIF-1a][38]. It
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Figure 1 Fatty acids and cytokines utilize similar downstream signaling pathways to activate inflammatory response in obesity.
Saturated fatty acids signal via toll-like receptors (TLRs), and cytokines signal via respective cytokine receptors (CR) to activate MAPK enzymes
including JNK, ERK, and p38MAPK along with I�B and protein kinase C (PKC) pathways. Other mechanisms include activation of these pathways
by NOD-like receptors (NLRs), production of reactive oxygen species and oxidative stress, and endoplasmic reticulum stress (ER stress). The
activation of these pathways leads to production of transcription factors including NF�B and C-Jun that enter nucleus and bind specific
sequences on gene promoters, and lead to transcription of inflammatory cytokine and chemokine genes. The cytokines produced will act in an
autocrine, paracrine and endocrine manner and interfere with insulin signaling. They will also stimulate further cytokine production that will
propagate the activation of these pathways, leading to further inflammation.
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is also associated with altered adipokine production with
enhanced production of leptin and resistin, and reduced
production of adiponectin [39-50].
In addition, inflammation results in secretion of cyto-

kines and chemokines. This will activate adipose tissue
T- lymphocytes and resident macrophages, which are
present in adipose tissue under physiological conditions.
This then leads to secretion of pro-inflammatory cyto-
kines and chemokines from these cells that attract
immune cells including other T-lymphocytes, neutro-
phils, and monocytes[16,18,51-60]. Once in adipose tis-
sue, monocytes differentiate to macrophages, and start
secreting cytokines that propagate local inflammation in
adipose tissue.

Inflammatory pathway activation drives
inflammation and insulin resistance in obesity
Inflammation mediated by increased cytokine produc-
tion and excess fatty acids or ‘lipotoxicity’ activate
inflammatory pathways in immune and metabolic cells.
These pathways include Mitogen Activated Protein
Kinase (MAPK) pathway members including c-jun
amino terminal kinase (JNK), Extracellular Regulated
Kinase (ERK), and p38MAPK. In addition I�B kinase
[61-69] and protein kinase C (PKC)[70-73] pathways are
also activated. The activation of these pathways leads to
interference with insulin signaling leading to insulin
resistance, an early event in obesity[16,53-57]. Insulin
resistance leads to mitigation of anti-lipolytic effect of
insulin on adipose tissue, and lipolysis ensues with local
fatty acid release triggering further local inflammation.
What begins as a local process eventually exceed the
capacity of adipose tissue to contain it, and cytokines
and free fatty acids are released into the circulation and
reach metabolic organs including skeletal muscle and
liver[74,75].
In skeletal muscle, this is compounded by the pre-

sence of Intermyocellular Fat Depot [IMFD] that
expands with obesity and harbors immune cells includ-
ing macrophages[76](Figure 2).
In addition, fatty acid uptake into muscle cells leads to

accumulation of intracellular triglycerides, which act as a
sink to protect muscle from lipotoxicity. Interestingly,
athletes have excess triglyceride stores in skeletal muscle,
but demonstrate enhanced insulin sensitivity. This ‘ath-
lete’s paradox’ hints to the fact that triglycerides are not
the culprits in mediating inflammation and insulin resis-
tance, but it is metabolic intermediates like ceramide and
diacylglycerol generated intracellularly that interfere with
insulin signaling and trigger inflammation[77-79].
The deposition of fat into the liver leads to fatty liver

with activation of inflammatory pathways, secretion of
inflammatory cytokines, monocyte attraction and

macrophage generation, which in turn leads to hepatic
inflammation and insulin resistance [32,80].
The initial response to compensate for insulin resis-

tance is via increased insulin production by pancreatic
b-islet cells, leading to hyperinsulinemia. Eventually, the
pancreas fails to maintain insulin production in the face
of steadily increasing insulin demand, leading to the
development of type 2 diabetes.

Inflammation is associated with macrophage infiltration
of metabolic organs
The detection of enhanced expression of Tumor Necro-
sis Factor-a [TNF- a], a prototypical inflammatory cyto-
kine, in adipose tissue in obese mice provided first clues
to presence of inflammation in obesity[81]. This was
then confirmed in obese and diabetic humans[4]. The
source of TNF-a was initially presumed to be the adipo-
cyte, but it was eventually found to be from an immune
cell, the macrophage[16,18,82-85]. These cells produce
multiple cytokines and chemokines in obesity that mod-
ulate function of metabolic organs leading to inflamma-
tion and insulin resistance[83-85].
Macrophages are mononuclear phagocytic cells that

are part of the innate immune system, an evolutionarily
conserved defense system with cells placed at ports of
entry of pathogens and other environmental threats to
the body[86-88]. One function for these cells is sampling
antigens as they enter the body and then either destroy
them by an ‘innate response’ with no memory kept of
the encounter, or present the antigen to the T-lympho-
cytes to mount an adaptive immune response[27,86].
The precursors of macrophages, the monocytes, are gen-
erated in the bone marrow. These cells are recruited to
adipose tissue by signals from adipocytes and adipose
tissue macrophages[89,90]. Once in the adipose tissue,
the monocytes differentiate to macrophages[91].

Phenotypic characterization of macrophages in
metabolic organs
Adipose tissue
Early in obesity, adipocytes are predominantly responsi-
ble for producing chemokines and macrophages are
involved in producing cytokines, but both cells are cap-
able of producing these molecules, and can modulate
function of metabolic organs leading to inflammation
and insulin resistance[83-85]. Adipose tissue macro-
phages are present in two main subtypes. The resident
or ‘M2’ macrophages are present in almost all organs in
the body as resident cells under physiological conditions,
where they serve to maintain tissue homeostasis[92-95].
Under normal physiological states, 5-10% of adipose tis-
sue cells are resident M2 macrophages. These cells are
distinguished by being responsive to IL-4 and IL-13 and
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their ability to secrete anti-inflammatory cytokines like
IL-10.
In addition, M2 macrophages upregulate production

of Arginase I enzyme, reducing nitric oxide synthesis
and inflammation via metabolizing arginine to ornithine
[92,93,96-100]. Arginase I gene expression is stimulated
by IL-4 and Signal Transducer and Activator of Tran-
scription-6 (STAT-6) axis[101]. This in turn signals via
the master regulator of adipogenesis and fatty acid sen-
sor Peroxisome Proliferator-Activated Receptor gamma
(PPARg).
PPAR/RXR heterodimers bind to specific sequences at

the Arginase I gene enhancer region activating its

expression[102]. PPARg is essential for attainment and
preservation of M2 macrophage phenotype, as its dele-
tion in macrophages leads to excess adiposity in mice
on high fat diet. It also results in insulin resistance in
skeletal muscle and liver in these mice. When adipo-
cytes are co-incubated with PPARg knockout macro-
phages, they become insulin resistant, which argues for
factors produced by these macrophages, including IL-4
among others, that modulate metabolic function in adi-
pose tissue, liver and skeletal muscle[102,103].
On the other hand, bone marrow-derived monocytes

migrating into obese adipose tissue and exposed to fatty
acids and cytokines differentiate to an inflammatory or

Figure 2 The model for macrophage-metabolic interactions and inflammation in obesity. Adipose tissue expansion in obesity results in an
inflammatory state characterized by production of adipokines, cytokines, and chemokines. This is also associated with free fatty acid [FFA] release
via increased lipolysis. Activation of resident or ‘M2’ adipose tissue macrophages leads to secretion of inflammatory cytokines and chemokines;
this will lead to attraction of monocytes that differentiate to macrophages. Fatty acids and cytokines spill into circulation, and get to metabolic
tissues including skeletal muscle and liver. In addition, the expansion of the intermyocellular fat depot also attracts macrophages, and this is
associated with secretion of pro-inflammatory cytokines, chemokines and FFA release that occur locally. The exposure of muscle to cytokines,
chemokines and fatty acids from systemic and local sources triggers an inflammatory response characterized by activation of inflammatory
pathways, upregulation of gene expression, and synthesis and secretion of inflammatory cytokines and chemokines. The attracted macrophages
will in turn secrete inflammatory molecules, which signal through inflammatory pathways propagating this inflammatory response and resulting
in muscle inflammation and insulin resistance. JNK = c-jun amino terminal kinase; PKC = protein kinase C.
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‘M1’ macrophages [89,91,104,105]. M1 macrophages are
responsive to interferon gamma and lipopolysaccharide,
and are capable of producing pro-inflammatory cyto-
kines and nitric oxide. Their numbers increase several
folds with obesity and high fat feeding[18].
The M1/M2 divide is a simplistic view of the reality of

macrophage existence in different organs[106,107].
Macrophages very likely exist in multiple intermediate
phenotypes depending on local tissue microenvironment
[98,99], and are able to respond to local cues and shift
their phenotype to maintain local tissue homeostasis.
Another consideration is that while M1 macrophages

in obese adipose tissue originate mainly from bone mar-
row [90], it is possible that other cells may contribute to
this pool. The pre-adipocyte may be a potential source
of macrophages in obese adipose tissue, as these cells
share common capabilities with macrophages in
response to obesogenic environments.
Pre-adipocytes reside in stromal vascular fraction

within adipose tissue, and are bathed in the same cock-
tail of nutrients and cytokines that influence their inter-
actions with other cells in that environment[108-110].
Macrophages are capable of storing lipids as seen in
foam cells present in atherosclerotic plaques, and foam-
like cells are also seen in obese adipose tissue[111-113].
Pre-adipocytes injected into peritoneal cavity of mice
can act like macrophages, with phagocytosis of microor-
ganisms and posses antimicrobial actions via generation
of reactive oxygen species [108,110]. These abilities dis-
appear when cells differentiate to mature adipocytes.
Pre-adipocytes can also differentiate to macrophages

with expression of many macrophage markers[108], and
this is probably due to direct physical contact between
pre-adipocyte and macrophage. In addition, the tran-
scriptional profile of pre-adipocyte is in fact closer to
the macrophage than to the adipocyte, and these cells
produce many common products to both including
cytokines, chemokines, and adhesion molecules
[108,110,114,115].
More recently, weight loss in mice previously fed

high fat diet lead to infiltration of adipose tissue with
M2 macrophages. This was mediated by lipolysis, and
macrophages were acting as neutralizers of effects of
excess fat in obese adipose tissue [74]. This is in con-
trast to when weight gain leads to the infiltration of
M1 macrophages, and argues for a robust immune
response to local adipose tissue microenvironment,
and this M2 infiltration may be an attempt to protect
adipose tissue from mounting an inflammatory
response with excess local fatty acid concentrations.
The ultimate aim of inflammation is the induction of
tissue remodeling and to restore homeostasis, and M2
macrophages act to initiate and propagate this process
with weight loss[116,117], and depending on local

tissue microenvironment, there is potential plasticity in
cell phenotype.

Skeletal muscle
In skeletal muscle, circulating cytokines and fatty acids
and those produced locally from IMFD [e.g. TNFa, IL-
6] jointly affect muscle. Macrophages infiltrate IMFD
when it expands in obesity [18], and as the IMFD depot
is in immediate vicinity of skeletal muscle, it is likely
that muscle-macrophage crosstalk will impact both cells.
Insulin resistance in muscle is caused by several
mechanisms including fatty acid oxidation defects due
to effects on mitochondrial biogenesis, oxidative stress,
accumulation of lipid intermediates in muscle, and
effects of pro-inflammatory cytokine on insulin signaling
[57,61,118-122].
Macrophage products from saturated fatty acid treat-

ment in-vitro causes skeletal muscle insulin resistance
[123]. The question whether macrophages infiltrate ske-
letal muscle in obesity is important, as muscle takes up
to 75% of carbohydrate intake after a meal, making it a
major determinant of postprandial glycemic status.
There is increasing evidence that macrophages may

infiltrate skeletal muscle in obesity. In rodents, high fat
feeding increases macrophage infiltration in muscle
compared to normal chow fed animals [124]. In addi-
tion, deletion of PPARg in myeloid cells, a master regu-
lator of adipogenesis and inflammation, also resulted in
increased macrophage and dendritic cell markers in
muscle [125]. Macrophage markers have been documen-
ted mainly in IMFD, and rarely between myofibrils with
high fat feeding using immunohistochemistry [18,124]
and bone marrow transplant experiments [126]. In the
latter case, macrophages were detected at the muscle-fat
junction, raising the question of whether their location
denotes a non-directional chemokinetic response, or a
true directional, chemotactic response to factors pro-
duced by muscle.
Furthermore, dendritic cell were detected in muscle

from high fat fed mice, and fatty acid treatment of bone
marrow derived macrophages [BMDM] and dendritic
cells [BMDC] induced inflammation in the BMDC and
not BMDM [126].
In human studies, macrophages were detected in ske-

letal muscle from obese non-diabetic subjects and this
was positively associated with body mass index and
negatively associated with insulin sensitivity [127].
Macrophages were also detected in human muscle from
subjects with normal glucose tolerance but at much
lower levels than in adipose tissue [128].
However, other studies failed to demonstrate the pre-

sence of macrophage markers using microarrays of mus-
cle from high fat fed mice [16] and no increase of
macrophage markers in muscle was noted in severely
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obese humans undergoing lifestyle intervention program
[129].
While the above studies provide evidence for and

against the infiltration of skeletal muscle by macro-
phages, there are also challenges to pinpoint the
mechanisms of muscle-macrophage interaction in obe-
sity. First, whole tissue analysis for presence of macro-
phage markers does not necessarily clarify the location
of these macrophages, as they could be adherent to the
endothelium within blood vessel lumen rather than infil-
trating into muscle tissue when tissues are prepared for
analysis. Second, a significant challenge is to clarify if
these macrophages are in fact infiltrating within muscle
fibers or are they mainly in the IMFD that expands in
obesity and attracts macrophages. The potential
mechanisms and pathways involved in macrophage
recruitment to muscle remain incompletely understood.

Liver
The accumulation of fat in the liver causes Non-alco-
holic fatty liver disease (NAFLD) which is an important
complication of obesity[130]. Resident liver macrophages
[Kupffer cells] play a significant protective role in obe-
sity by producing anti-inflammatory cytokines e.g. IL-10,
and their depletion results in hepatic inflammation and
insulin resistance[131]. In addition, obesity leads to
macrophage recruitment to the liver via their Chemo-
kine C-C receptor-2 (CCR2) in response to Chemokine
C-C ligand-2 (CCL2) produced by hepatocytes, and
these cells regulate hepatic lipid accumulation in the
liver[132,133].
In addition, the depletion of resident liver macro-

phages [Kupffer cells] leads to protection from effects of
high fat feeding-induced inflammation.
The association of liver inflammation via the produc-

tion of inflammatory cytokines including TNFa and IL-
6 has recently been also linked to the development of
hepatocellular carcinoma via stimulation of STAT-3
[134]. As obesity is associated with risk of several can-
cers, this is a novel area of research that requires further
investigation to clarify the link between obesity, inflam-
mation and cancer.

Conclusions
In summary, obesity is associated with chronic low-
grade inflammation, and macrophage crosstalk with
metabolic organs mediates this inflammatory response.
Macrophage precursors are recruited to metabolic
organs in obesity, and produce several factors that lead
to inflammation and insulin resistance in these organs.
The Inflammatory process seen in obesity is caused by

the activation of several pathways activated by nutrients
including fatty acids and cytokines. The collusion of
these stimuli leads to interference with insulin signaling

and insulin resistance (Figure 2), which is an early step
on the path to type 2 diabetes.
Defining the mechanisms by which different pathways

and molecules modulate progression of inflammation in
obesity holds the promise of developing interventions
that may help hundreds of millions of people around
the world struggling with obesity and type 2 diabetes.
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