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Abstract
Gestational Diabetes Mellitus (GDM) has been on the rise for the last two decades along with the growing 
incidence of obesity. The ubiquitous use of Endocrine-Disrupting Chemicals (EDCs) worldwide has been associated 
with this increase in GDM incidence. Epigenetic modifications such as DNA methylation, histone acetylation, 
and methylation have been associated with prenatal exposure to EDCs. EDC exposure can also drive a sustained 
disruption of the hypothalamus-pituitary-thyroid axis and various other signaling pathways such as thyroid 
signaling, PPARγ signaling, PI3K-AKT signaling. This disruption leads to impaired glucose metabolism, insulin 
resistance as well as β-cell dysfunction, which culminate into GDM. Persistent EDC exposure in pregnant women 
also increases adipogenesis, which results in gestational weight gain. Importantly, pregnant mothers transfer these 
EDCs to the fetus via the placenta, thus leading to other pregnancy-associated complications such as intrauterine 
growth restriction (IUGR), and large for gestational age neonates. Furthermore, this early EDC exposure of the 
fetus increases the susceptibility of the infant to metabolic diseases in early life. The transgenerational impact of 
EDCs is also associated with higher vascular tone, cognitive aberrations, and enhanced susceptibility to lifestyle 
disorders including reproductive health anomalies. The review focuses on the impact of environmental toxins in 
inducing epigenetic alterations and increasing the susceptibility to metabolic diseases during pregnancy needs to 
be extensively studied such that interventions can be developed to break this vicious cycle. Furthermore, the use 
of EDC-associated ExomiRs from the serum of patients can help in the early diagnosis of GDM, thereby leading to 
triaging of patients based on increasing risk factor of the clinicopathological condition.
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Introduction
Gestational Diabetes Mellitus (GDM) is known to be the 
most common pregnancy complication among women 
worldwide and is usually diagnosed in the second or third 
trimester of pregnancy. The increasing prevalence of 
GDM has been associated with an increase in maternal 
obesity and depending on the diagnostic criteria used, 
it is known to affect 6-25% of pregnant women [1]. The 
standardized prevalence rate of GDM in 2021 across the 
world was 14% based on the International Diabetes Fed-
eration Diabetes Atlas, 2021 [2]. Advanced maternal age, 
ethnicity, high-carb diets, pre-pregnancy obesity, and a 
family history of type 2 diabetes mellitus (T2DM) have 
all been identified as risk factors for GDM [3, 4]. Inter-
estingly, more than 50% of GDM patients lack these con-
ventional traits, suggesting the important role of these 
environmental variables [5]. However, the precise causes 
of GDM still remain unknown.

The increasing use of Endocrine Disrupting Chemicals 
(EDCs) also correlates with the rise in the incidence of 
GDM. EDCs are specialized exogenous compounds that 
have the potential to significantly alter normal endocrine 
signals [6]. They share structural similarities with some 
endogenous hormones and thus, can cause hormonal 
disruptions which result in obesity and related lifestyle 
disorders like cardiovascular disorders, T2DM, as well 
as developmental and reproductive disorders [6]. EDCs 
are widely used in various consumer products like food 
packaging, cosmetics, fabrics, water, detergents, and vari-
ous industrial consumables. Humans have been exposed 
to these EDCs for many years via diet, agricultural pes-
ticides, and various other daily consumables. Probable 
risks to public and human health have been greatly exac-
erbated by the widespread usage of EDCs and their asso-
ciation with chronic disorders [7].

Several EDCs like Bisphenol A (BPA), phthalates, Per- 
and Poly-fluoroalkyl Substances (PFAS), heavy metals, 
dioxins, parabens, and others have been associated with 
disorders such as impaired glucose metabolism, T2DM, 
reproductive disorders, cancer, metabolic disorders, cog-
nitive disorders, and hypertension8–11. A growing body 
of research indicates that exposure to EDCs is especially 
dangerous during pregnancy because it can affect the 
fetus, thereby resulting in long-term developmental com-
plications such as intrauterine growth restriction (IUGR) 
and preeclampsia12. Particularly, many studies suggest 
that exposure to EDCs is directly associated with the 
development of GDM among pregnant women13,14.

Pregnancy is accompanied by a minimum amount 
of insulin resistance in the body of the mother which is 
essential for the development of the fetus. This tightly 
regulated pathway is disrupted by the EDCs, which act as 
xenobiotic substances affecting the hypothalamus-pitu-
itary-thyroid axis aiding an increased insulin resistance 

in the body of the mother leading to GDM [13, 14]. This 
results in hyperglycemic conditions in the maternal body. 
Placental exposure to EDCs promotes an alteration of 
placental functioning [8] including the disruption in the 
expression of placental miRs which is represented by 
an altered level of Exosomal micro RNAs (ExomiRs) in 
the maternal circulatory system representing placental 
health [15]. This leads to severe maternal and fetal out-
comes among patients with GDM [15].

A mother can transfer EDCs to the developing fetus via 
the placenta [8]. This early fetal exposure to EDCs can 
lead to preterm birth as well as Type 1 Diabetes, obesity, 
and cardiovascular disease, and reproductive disorders 
in the offspring [9–11] (Fig.  1). Exposure of pregnant 
women to EDCs can also lead to various epigenetic mod-
ifications such as histone modifications and DNA meth-
ylation, which are associated with GDM onset among 
pregnant women and can hinder fetal development [12]. 
EDCs particularly disrupt the Hypothalamus-pituitary-
thyroid axis, leading to β-cell dysfunction and impaired 
glucose metabolism [13] (Fig. 1). ExomiRs are promising 
candidates to act as non-invasive biomarkers and have 
been studied extensively in the context of several diseases 
[14]. However, there is a dearth of studies associating 
EDC exposure with epigenetic modifications, including 
alterations in ExomiRs in GDM patients. Exposure to 
EDCs has been hypothesized to alter exosomal signal-
ing, which is a crucial mechanism for intercellular com-
munication, and can contribute to GDM development as 
these circulating Exo-miRs are a surrogate marker of pla-
cental health in GDM, thereby acting as a placental func-
tion marker [15]. This review compiles the literature on 
mechanisms by which exposure to different EDCs results 
in GDM and related fetal developmental anomalies. It 
also discusses the transgenerational effect resulting from 
EDC exposure on children, who are more likely to have 
metabolic abnormalities later in life. We also highlight 
the role of epigenetic modifications, particularly the 
role of ExomiRs, in EDC-induced GDM development, 
which is an area in need of future research to develop 
non-invasive biomarkers as well as potential therapeu-
tic targets for the prevention of GDM and its conse-
quences. Furthermore, the establishment and utilization 
of a federated learning-based system for detecting GDM 
by utilizing m-health platforms will enable the most 
accurate detection of GDM and provide information on 
the software-based distribution of clinical resources as 
well as the detection of probable GDM-associated EDCs 
even in remote areas [15]. This would in turn help in the 
lifestyle interventions to reduce the dietary, behavioral, 
and residential exposure of EDCs to men and women of 
reproductive age [16] are seen to greatly influence the 
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obstetrics health of women thereby improving pregnancy 
outcomes.

Gestation is a critical phase in the life of the mother 
and the fetus accompanied by suppressed immune func-
tioning, any alterations during the phase can be the most 
probable cause for increased susceptibility in the off-
spring and the development of several complications in 
the offspring. This is often linked with the early onset of 
insulin resistance in the life of the offspring of mothers 
with GDM [9].. Moreover, the offspring of these mothers 
are also seen to have a higher basal metabolic index lead-
ing to obesity [9]. These infants are also seen to develop 
several anomalies in their early stages of life which 
include cardiovascular, respiratory as well as reproduc-
tive disorders [9–11]. This implies the Developmental 
Origins of Health and Disease (DOHaD) in offspring and 
the importance of the management of GDM.

Literature search process
This review was performed by investigating key research 
and review papers presented at conferences and semi-
nars, as well as publications in books, journals, and 
various other online resources. The publications for 
the literature study were mainly obtained from Google 
Scholar, PubMed, Science Direct, Springer, and Research 
Gate. This work includes results that were published over 
the previous 15 years. The most common keywords used 
to find publications were “Endocrine Disruptors,” “Gesta-
tional Diabetes,” and “microRNAs.” The term “AND” was 
additionally employed when searching for two or more 
keywords at the same time, to ensure no relevant publi-
cations were overlooked. The publications were manu-
ally reviewed and then filtered on the basis of the title, 
abstract, and content. The type and concentrations of 
EDCs mentioned in the study are depicted in tabular for-
mat (Table 1).

Fig. 1 The various EDCs and their impact on pregnant women. EDCs can affect the hypothalamus-pituitary-thyroid axis and cause thyroid dysfunction, 
which in turn results in beta-cell dysfunction, impaired glucose metabolism, and insulin resistance among pregnant women. When the mother is ex-
posed to EDCs, she can transfer them to the fetus via the placenta, which is one of the contributing factors for fetal growth restriction and preterm birth, as 
well as later development of cardiovascular and other metabolic disorders in exposed offspring. [EDC = Endocrine-Disrupting Chemical; BPA = Bisphenol 
A; PFAS = Per- and Poly-fluoroalkyl Substances; TSH = Thyroid stimulating hormone; TRH = Thyroid reducing hormone]
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Table 1 List of association of various endocrine disruptors with GDM and other pregnancy outcomes
Sl. 
No.

EDCs Present and their Concentrations Pregnancy 
complications

Study 
subjects

Samples 
collected

Refer-
ences

Bisphenols
1. BPA (0.72 μg/L), BPF (1.74 μg/L), BPS (0.30 μg/L), BPAF (0.025 μg/L) GDM Human Urine samples 20
2. BPA (first trimester - 1.39 µg/L and second trimester - 1.27 µg/L GDM Human Urine samples 22
3. BPA (first trimester - 1.23 μg/L and second trimester - 1.01 μg/L) GDM Human Urine samples 23
4. BPA (2.05 µg/g) GDM, Obesity Mice Urine samples 32
5. BPA (0.34 ng/mL) Pre-term births, 

congenital 
infection

Humans Cord blood 
samples

33

6. BPA (6.41 ng/mL) GDM Human Urine samples 37
Phthalates

7. MiBP (0.23 ng/mL), MBP (1.08 ng/mL), MBzP (0.15 ng/mL), MEHP (22.2 ng/mL) GDM Human Urine samples 37
8. MEP (0.07 ng/mL), MBzP (0.21 ng/mL), MCPP (0.33 ng/mL) GWG, GDM Human, Rats, 

Mice, Sheep, 
Baboons

Urine samples 44

9. MEHP (1.2 ng/mL), MEP (0.5 ng/mL) HDP, Obesity Rats Urine samples 50
Per- and Polyfluoroalkyl Substances (PFAS)

10. PFAS (0.02–0.06 ng/mL) GDM, Obesity Mice Blood samples 61
11. PFOS (0.20 ng/mL), PFOA (0.20 ng/mL), PFHxS (0.20 ng/mL), PFNA (0.10 ng/

mL)
GDM Rats Blood samples 62

12. PFHxS (0.30 ng/mL), PFOS (8.31 ng/mL), PFOA (1.71 ng/mL), PFNA (0.66 ng/
mL), PFDA (0.26 ng/mL)

GDM Mice Blood samples 63

13. PFOS (0.20 ng/mL), PFAS (0.10 ng/mL), PFOA (0.30 ng/mL) GWG Human Blood samples 65
14. PFOS (27.2 ng/mL), PFOA (3.31 ng/mL), PFHxS (4.54 ng/mL), PFDA (0.28 ng/

mL), PFNA (0.59 ng/mL)
GDM Mice Serum and cord 

blood samples
123

Heavy Metals
15. Cr (2.286 μg/L), Mn (2.725 μg/L), Cu (932.164 μg/L), Zn (634.382 μg/L), Cd 

(0.096 μg/L)
GDM Human Blood samples 81

16. Cd (0.37 μg/L), Pb (1.32 μg/L), Hg (0.93 μg/L) HDP, Obesity, Insu-
lin resistance

Human Blood samples 82

17. As (2.09–24.07 μg/L) GDM Human Blood samples 84
18. As (66 μg/L) Teratogenic effects Human Urine samples 94
19. Hg (11.9 μg/L) GDM Mice Serum and cord 

blood samples
123

Parabens
20. MeP (5.13 ng/mL), EtP (0.12 ng/mL), PrP (0.46 ng/mL) GDM, Obesity Mice Urine samples 111
21. MeP (17.96 μg/L), EtP (0.66 μg/L), PrP (0.94 μg/L) GDM Mice Urine samples 112
22. MeP (89.8 µg/L), PrP (19 µg/L), BuP (0.8 µg/L) GDM Human,

Mice,
Rats

Urine samples 113

Dioxins
23. PCB (0.005 ng/mL) GDM, Obesity Mice Blood samples 61
24. PCB (1.23 μg/g-lipid) GDM Mice Serum and cord 

blood samples
123

Other Endocrine Disruptors
25. DDE (0.5 μg/g-lipid) GDM Mice Serum and cord 

blood samples
123

25. Nonylphenols (first trimester 4.10 ng/mL, second trimester 3.31 ng/mL, and 
third trimester 3.09 ng/mL)

GDM, Placenta pre-
via, Preeclampsia, 
oligohydramnios 
Hyperthyroidism

Human Urine samples 132

Abbreviations used in the table: GDM: Gestational Diabetes Mellitus; GWG: Gestational Weight Gain; HDP: Hypertensive Disorders of Pregnancy; BPA: Bisphenol A; 
BPF: Bisphenol F; BPS: Bisphenol S; BPAF: Bisphenol AF; MiBP: Mono-isobutyl phthalate; MBP: Monobutyl phthalate; MBzP: Monobenzyl phthalate; MEHP: Mono-
2-ethylhexyl phthalate; MEP: Monoethyl phthalate; MCPP: Mono(3-carboxypropyl) phthalate; PCB: Polychlorinated biphenyls; PFAS: Per- and polyfluoroalkyl 
substances; PFOS: Perfluorooctane sulfonic acid; PFOA: Perfluorooctanoic Acid; PFHxS: Perfluorohexanesulfonic acid; PFNA: Perfluorononanoic Acid; PFDA: 
Perfluorodecanoic acid; Cr: Chromium; Mn: Manganese; Cu: Copper; Zn: Zinc; Cd: Cadmium; Pb: Lead; Hg: Mercury; As: Arsenic; MeP: Methyl Paraben; EtP; Ethyl 
Paraben; PrP: Propyl Paraben; BuP: Butyl Paraben; DDE: Dichlorodiphenyldichloroethylene
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Endocrine disrupting chemicals (EDCs) as a 
contributing factor to gestational diabetes mellitus 
(GDM)
Bisphenol A (BPA)
The EDC with the biggest volume of production world-
wide is BPA, with an emission rate of about 100 tons 
annually. Being the primary monomer in polycarbonate 
plastics, it is widely used and can enter the body orally 
and topically [17]. Various pieces of evidence suggest 
that BPA may be hazardous to human health, particularly 
for endocrine metabolism, including, but not limited to, 
glucose homeostasis [18–20]. Numerous epidemiologi-
cal studies have been conducted across the world to find 
a link between the exposure of pregnant women to BPA 
and GDM. Some of these are described below, and these 
studies have found that the rise in GDM cases can be cor-
related with BPA exposure [21–23].

According to one study, blood glucose levels in sub-
fertile women were positively correlated with BPA expo-
sure during the second trimester of pregnancy [23]. 
Additionally, among overweight/obese women, sec-
ond-trimester urinary BPA concentrations are directly 
linked to their glucose levels [24]. Disruption of mater-
nal glucose homeostasis by BPA is firmly supported by 
in vivo research, and this effect is mediated via estrogen 
receptor-β activation [25]. Estrogens have a significant 
role in increasing β-cell mass during rodent pregnancy 
in part due to miR-338-3p suppression [26]. A rodent 
study by Wei et al. demonstrates that B.P.A. exposure to 
mice leads to a lower expression of serum miR-338 which 

consequently suppresses the translation of the protein 
PDH1 expression in pancreatic tissues, resulting in an 
increasing irregularity of insulin secretion [27] (Fig.  2). 
Other in vitro studies have shown that BPA exposure 
may contribute to weight gain and the development of 
obesity through several pathways, including the prolifera-
tion and differentiation of 3T3L1 preadipocytes [28, 29]. 
Exposure to BPA is also seen to enhance the expression 
of IL6 in 3T3L1 cells [30]. Another study in human adi-
pose stem cells showed that activation of estrogen recep-
tors by BPA leads to the induction of adipogenic genes 
(DLK, PPARγ, IGF1, etc.) [31]. Angelo et al. observed 
that mice exposed to BPA showed a reduction in adipo-
nectin secretion, thereby leading to obesity [32]. The link 
between BPA exposure and obesity has also been noted 
in humans. According to the NHANES survey, urine BPA 
levels are linked to obesity, which may indirectly con-
tribute to the development of GDM [33]. Furthermore, 
an increase in prenatal BPA levels leads to the upregula-
tion of pro-inflammatory cytokines such as TNFα and 
IL6 in neonatal cord blood giving rise to insulin resis-
tance and β-cell dysfunction [34]. (Fig. 3). It is also been 
demonstrated that BPA in pregestational and gestational 
diabetes patients could decrease placental expression 
of glucose transporters (GLUT1, GLUT4, and GLUT9), 
whose levels are inversely correlated with maternal body 
mass index (BMI) during the course of gestation [35] 
(Table  2). Furthermore, exposure to EDCs like BPA is 
associated with an altered fibroglandular volume thereby 
altering the density of breast tissues [36]. These scattered 

Fig. 2 Exposure to EDCs like BPA, dioxins, phthalates and parabens alter certain microRNAs in maternal serum. BPA and phthalates alter placental microR-
NAs and induce epigenetic modifications such as histone methylation, histone acetylation, and DNA methylation, thereby having a transgenerational 
impact. There is a paucity of such epigenetic studies for EDCs like PFAS and heavy metals. [EDC = Endocrine-Disrupting Chemical; BPA = Bisphenol A; 
PFAS = Per- and Poly-fluoroalkyl Substances]
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fibroglandular breast tissue can often form lumps making 
women more susceptible to acquiring breast cancer even 
independent of the BMI [37].

Pregnant women can transfer BPA to the developing 
fetus via the placenta [38] allowing, exposure to BPA to 
have a transgenerational impact (Fig.  2). Exposure to 
BPA can lead to epigenetic modifications like miRNA 
alterations, increased DNA methylation, and altered his-
tone methylation and acetylation patterns. For instance, 
a whole genome study compared the level of expression 
of 1349 miRNAs in placental samples from women who 
lived in areas that were polluted to those from women 
who lived in unpolluted areas using miRNA microarray 
technology. In this study, they found that significantly 
higher miR-146a expression, which targets genes asso-
ciated with neural disorders, signal transduction, and 
cancer, was linked to high placental BPA levels [39] in 
the samples from polluted areas (Fig. 2). Other miRNAs 
including miR-29a, miR-222, and miR-132 have also been 
shown to be increased in GDM and this increase is attrib-
uted to BPA exposure [40, 41], further indicating the util-
ity of using serum miRNAs as non-invasive biomarkers. 
Other than miRNA alterations, BPA exposure during rat 

pregnancy has also been shown to induce DNA hyper-
methylation of the Igf2 gene in islets of the offspring, 
leading to its overexpression [42]. Similarly, another rat 
model showed that maternal exposure to BPA caused 
demethylation of H3K4 and H3K9 at the Pdx1 promoter 
resulting in a downregulation of pancreatic Pdx1 expres-
sion in the offspring [43]. Such epigenetic modifications 
can cause cardiovascular disorders, diabetes, childhood 
obesity, and other metabolic disorders among exposed 
infants [12, 44] (Table 2). Additionally, lifestyle modifica-
tions can lead to minimizing the risk of exposure to dif-
ferent bisphenols thereby reducing dietary, behavioral 
as well as residential exposure thereby improving the 
reproductive health of both men and women [16]. Fur-
thermore, successful interventions in targeting the route 
for known exposures of Bisphenols to provide personal-
ized education and support to participants thereby help-
ing them tp replace the items known the be sources of 
Bisphenols have been taken by several governing bodies 
to improve the health of people [16].

Fig. 3 Exposure to EDCs like BPA, phthalates, PFAS, dioxins, heavy metals, and parabens among pregnant women disrupts various signaling pathways 
and leads to increased incidence of gestational weight gain and insulin resistance. Pi3K-Akt expression pathway is the most common pathway which is 
seen to be disrupted by the EDCs, leading to GDM. [EDC = Endocrine-Disrupting Chemical; BPA = Bisphenol A; PFAS = Per- and Poly-fluoroalkyl Substances; 
PPAR = Peroxisome proliferator-activated receptor; ER = Estrogen receptor; GWG = Gestational weight gain; IR = Insulin resistance]
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Phthalates
Since the 1930s, phthalates, also known as phthalic acid 
diesters, have been a pervasive class of synthetic com-
pounds used as plasticizers in a variety of consumer 
products ranging from plastic bottles to cosmetics [45]. 
Phthalates do not have covalent bonds with polymers, 
therefore they can easily leach into the environment and 
enter the human body through ingestion, inhalation, 
or cutaneous absorption. Several studies highlighted 
below have described the endocrine-disrupting nature 
of phthalates, especially the primary priority phthalates, 
which can lead to various metabolic and reproductive 
disorders among women.

A study in pregnant women demonstrated that 
increased gestational weight gain (GWG) and decreased 
glucose tolerance are linked to higher urinary mono-ethyl 
phthalate (MEP), a metabolite of the parent molecule 
of di-ethyl phthalate (DEP) [46]. A positive association 
between urinary mono-(3-carboxypropyl) phthalate 
(MCPP) and GWG in pregnant women has also been 
described suggesting that phthalates can act as a precur-
sor to GDM [47]. Mechanistically, phthalates have been 
shown to be PPARγ agonists (Fig.  3), and activation of 
PPARγ by phthalates stimulates the proliferation of adi-
pocytes in 3T3L1 cells [48] as well as in primary mouse 
bone marrow cells [49]. An in vivo rat study showed that 
gestational exposure to the priority phthalate di(2-ethyl-
hexyl) phthalate (DEHP) impaired glucose tolerance in 
offspring at 2 months of age [50]. A study by Chen et al. 
showed that in GDM-positive rats, di-n-butyl phthalate 

(DBP) increased hyperglycemia among pregnant women 
and impaired glucose handling in vivo, while it impaired 
FOXM1, decreased β-cell viability, and impaired STAT1 
signaling cascade in vitro [51]. Another study in mice 
found that DBP exposure significantly increased glu-
cose intolerance and insulin resistance by disrupting 
PI3K expression, AKT phosphorylation and decreased 
pancreatic GLUT2 expression [52] (Fig.  3). According 
to a prospective study, phthalate exposure in a low-risk 
cohort of pregnant women was associated with elevated 
diastolic blood pressure within the first 20 weeks of preg-
nancy as well as the emergence of Hypertensive Disor-
ders of Pregnancy (HDPs) like gestational hypertension 
and pre-eclampsia in the latter stages of pregnancy [53]. 
In a study by Binder et al., it was shown that exposure to 
phthalates like DEP and MEP can also cause an increase 
in the breast fibroglandular volume thereby making 
women more susceptible to breast cancer [36].

Patients with GDM have altered levels of certain circu-
lating miRNAs or ExomiRs, including miR-29a, miR-222, 
miR-132 [41], or miR-16, miR-17, miR-19, and miR-20a 
[54]. Another human study found a correlation between 
serum phthalates and miR29a expression. Specifically, a 
positive correlation was observed between mono-2-eth-
ylhexyl phthalate (MEHP) and miR-29a, wherein both 
monobutyl phthalate (MBP) and mono-isobutyl phthal-
ate (MiBP) levels were negatively correlated with miR-29a 
levels [40]. An elevated levels of serum miR-29a is seen 
in GDM patients compared to serum of non-diabetic 
pregnant women [40]. Apart from circulating miRNAs, 
phthalates have also been shown to alter the expression 
of various placental miRNAs such as miR-185, miR-
142-3p, and miR-15a-5p, thereby leading to GDM among 
pregnant women [55] (Fig. 2). Other epigenetic modifica-
tions are also associated with phthalate exposure as has 
been noted in animal models. Rats exposed to di(2-eth-
ylhexyl) phthalate (DEHP) showed an increase in global 
DNA methylation [50]. A study in mice showed that 
gestational phthalate exposure resulted in DNA meth-
ylation alterations in the sperm of F3 offspring and this 
increased the transgenerational inheritance of obesity as 
well as reproductive disorders [56]. Thus, phthalate expo-
sure contributes to maternal obesity as well as GWG, and 
epigenetic modifications underlie these phenotypes [57]. 
This can eventually lead to insulin resistance and β-cell 
dysfunction which has a transgenerational impact. Later 
in life, offspring from mothers exposed to phthalates have 
an additional risk of developing obesity, diabetes, cardio-
vascular, and reproductive disorders [58] (Table 2). Fur-
thermore, a study by Martin et al., shows that lifestyle 
modification changes greatly impact the exposure of men 
and women of reproductive age to phthalates thereby 
improving their reproductive health [16]. Such types 
of lifestyle modifications include prevention of dietary 

Table 2 The table shows epigenetic alterations caused by 
various endocrine disruptors leading to GDM
Sl. No. EDCs Present Epigenetic alterations Refer-

ences
1. Bisphenols

BPA, BPF, BPS, BPAF
miR level alterations (miR-146a, 
miR-29a, miR-222, miR-132), 
DNA hypermethylation, protein 
demethylation.

20, 22, 
23, 32, 
33,37

2. Phthalates
MiBP, MBP, MBzP, 
MEHP, MEP, MCPP

miR level alterations (miR-29a, 
miR-222, miR-132, or miR-16, 
miR-17, miR-19, and miR-20a, 
DNA methylation, DNA methyl 
alterations.

37, 44, 
50

3. Per- and Polyfluo-
roalkyl Substances
PFAS, PFOS, PFHxS, 
PFNA, PFDA

miRs level alterations, DNA 
methylation changes.

61, 62, 
63, 65, 
123

4. Heavy Metals
Cr, Mn, Cu, Zn, Cd, 
Pb, Hg, As

Altered miR-191 levels, DNA 
methylation alterations.

81, 82, 
84, 94, 
123

5. Parabens
MeP, EtP, PrP, BuP

miR level alterations (miR-15a-
5p, miR-185, DNA methylation.

111, 
112, 
113

6. Dioxins
PCB

miR level alterations (miR-
191, miR-103, miR-107), DNA 
methylation.

61, 
123
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exposure (plastic water bottles, plastic kitchenware, 
canned food), behavioral exposure (personal care prod-
ucts, cosmetics, dental care), and residential exposure 
(PVC pipes, pipes) by providing personalized education 
to the people in the society, thereby spreading awareness 
among participants in replacement of the product which 
are considered as the source of phthalates [16].

Per- and polyfluoroalkyl substances (PFAS)
PFAS refers to a broad class of synthetic chemicals uti-
lized in consumer and industrial products which includes 
shampoo, cosmetics, fast food packaging, non-stick 
cooktops, and pesticides [59]. They are resistant to deg-
radation due to the robust carbon-fluorine bonds in their 
structure [59]. According to the Stockholm Convention, 
the use of PFAS has been phased out in many countries, 
however, because they can remain and accumulate in the 
environment, they continue to circulate even after their 
production has been stopped [60].

Rodent studies demonstrate that high prenatal expo-
sure to PFAS levels including Perfluorooctanoic acid 
(PFOA) and perfluorooctane sulfonic acid (PFOS), 
impairs insulin signaling and glucose homeostasis 
thereby causing maternal health issues like GDM [61, 62]. 
For example, female CD-1 mice exposed to low doses of 
PFOA in utero had higher levels of leptin and insulin in 
their serum at 21 to 33 weeks [63]. This was also true in 
humans where women with GDM who had a family his-
tory of T2DM revealed a substantial positive relationship 
with PFAS congeners Perfluoroheptanoic acid (PFHpA), 
Perfluorododecanoic acid (PFDoDA), Perfluorononanoic 
acid (PFNA), and PFOA [64]. Similarly, another study 
showed that both impaired glucose tolerance and GDM 
were positively correlated with plasma PFOS concentra-
tions [65]. A study of pregnant Danish women showed 
a significant association between impaired glycemic 
index and elevated serum Perfluorohexane sulfonic acids 
(PFHxS) and PFNA concentrations [66]. PFAS exposure 
during pregnancy has also been linked to aberrant GWG 
as noted by two different human studies [67, 68], and 
excessive GWG can increase the risk of GDM. PFAS has 
been shown to interact with PPARα, γ, and β/δ [69] to 
induce adipogenesis, leading to obesity among pregnant 
women, which further impairs glucolipid metabolism 
[70] (Fig. 3). PFAS also acts via other PPAR-independent 
mechanisms to cause metabolic alterations like glyco-
gen depletion and mitochondrial dysfunction, which 
was seen in pregnant mice exposed to PFAS [71]. Apart 
from the well-established role of the thyroid gland in 
regulating glucose metabolism, cardiovascular func-
tion, and storage and expenditure of energy [72], it can 
also influence pregnancy outcomes and fetal develop-
ment. Importantly, as reviewed in an article by Birru et 
al., PFAS exposure in pregnant women can target the 

hypothalamic-pituitary-thyroid axis and this can con-
tribute to GDM development [13] (Fig.  3). Specifically, 
several human studies have found that maternal PFAS 
levels were positively associated with thyroid stimulat-
ing hormone (TSH), thereby disrupting thyroid homeo-
stasis, which can alter downstream glucose metabolism 
[73–75].

PFAS exposure can be transferred from mother to child 
via the placenta and breast milk [76, 77]. In fact, Kupsco 
et al., analyzed the ExomiRs in breast milk from mothers 
exposed to PFAS and found that PFOS and PFNA were 
associated with variable expression of certain groups of 
miRNAs [78]. There is more extensive literature on the 
association of human PFAS exposure with DNA methyla-
tion changes in either maternal serum or umbilical cord 
blood samples both at the global [79] as well as candidate 
gene levels [80, 81] (Table 2). As reviewed previously, pre-
natal exposure to certain PFAS is associated with adverse 
effects on both the mother and the infant, such as HDP, 
including preeclampsia, and low birth weight [82]. This 
PFAS exposure of the offspring can also disrupt thyroid 
function and cause kidney disease, obesity, metabolic and 
reproductive disorders [82].

Heavy metals
In 2012, EDCs were divided into several categories by 
the World Health Organization (WHO). Of these cat-
egories, the detrimental impact of four heavy metals and 
their conjugates, namely cadmium (Cd), arsenic (As), 
lead (Pb), and manganese (Mn), have received the most 
attention [83]. The sources of these heavy metal con-
taminations include fertilizers, food packaging, industrial 
wastes, and fossil fuel combustion [83]. Biomagnification 
of metals as a result of dumping of industrial wastes into 
water bodies without proper sewage treatment by these 
industries serves as a major source of heavy metal expo-
sure [83]. When As and Cd enter the body of an indi-
vidual, they primarily accumulate in the kidneys, liver, 
and pancreas, where they affect the specific function of 
important enzymes and have a negative impact on glu-
cose metabolism, including glycolysis, glycogenesis, and 
gluconeogenesis [84]. Various human studies have shown 
that exposure to heavy metals, either alone or in combi-
nation, increases the risk of developing diabetes [84, 85].

A study by NHANES demonstrated a positive correla-
tion of human urinary Cd levels with both BMI and waist 
circumference in children and adolescents [86]. More 
specifically, women with a higher concentration of pre-
pregnancy urinary Cd values were more susceptible to 
developing GDM [87]. While the direct evidence for the 
effects of Cd on obesity is not entirely clear from animal 
studies, there is a defined role of Cd in impairing adipose 
tissue physiology in vivo [88]. In vitro, Cd exposure sig-
nificantly decreased the cell viability of 3T3L1 cells in a 
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dose-dependent manner. Cd exposure was also linked 
with adipose cell dysfunction including reduced fatty 
acid synthesis and lipid degradation [89]. This occurs 
due to dysregulated transcription factors, like PPARγ 
and CEBPα [90], which cause endocrine dysfunction 
and alter adipocyte glucose handling, resulting in insulin 
resistance [88].

In 2020, Salmeri et al. conducted a systematic review 
and meta-analysis on maternal As exposure and GDM 
and reported that there is a positive correlation between 
both maternal blood and urine As levels with GDM [91]. 
Mechanistically, Yang et al. demonstrated that expo-
sure of pancreatic-β cells to inorganic arsenite (iAs3+) 
activates Nrf2, which reduces reactive oxygen species 
(ROS) signaling triggered by glucose, inhibits glucose-
stimulated insulin production and impairs pancreatic 
β-cell function [92]. Furthermore, 8-week male C57BL/6J 
mice, exposed to arsenite had an impairment in glucose 
metabolism due to miR-191 induced decrease in GLUT4 
translocation and inhibition of IRS1/AKT pathway [93]. 
Similarly, a French cohort study evaluated how GDM 
in women without any previous history of diabetes was 
affected by prenatal exposure to Pb and Cd and found 
that exposure to these heavy metals was positively asso-
ciated with GDM [94]. Exposure to some heavy metals, 
such as As and Cd, may exacerbate the “diabetogenic 
environment of pregnancy.” [95] These metals were posi-
tively correlated with GDM prevalence and identified in 
meconium samples from newborns of women with GDM 
[95]. Heavy metal exposure alters several other factors 
contributing to GDM including oxidative stress, inflam-
mation, PPARγ suppression, and alteration of genes asso-
ciated with diabetes [96].(Fig. 3).

There is also a link between prenatal heavy metal expo-
sure and epigenetic alterations in both the placenta and 
cord blood. For example, As exposure in early pregnancy 
showed a strong correlation with DNA methylation in 
newborn’s cord blood DNA [97]. Similarly, early preg-
nancy Cd exposure led to DNA methylation alterations 
at specific regions and these changes in offsprings were 
sex- as well as race-dependent [98]. Lastly, Pb exposure 
prenatally caused DNA hypomethylation in humans [99] 
and also caused alterations in miRNA expression in ani-
mal models [100]. By altering the epigenetic mechanisms, 
early exposure to these heavy metals can result in detri-
mental long-term consequences including diabetes, obe-
sity, and other diseases among childern [101].

Dioxins
Dioxins are a category of organic compounds that 
constitute organoleptically undetected derivatives 
of oxanthrene as well as fumarates [102]. Dioxins 
generally include Polychlorinated dibenzo-dioxins 
(PCDD), Polychlorinated dibenzofurans (PCDF), and 

2,3,7,8-tetrachloro-dibenzo-p-dioxins (TCDD). They are 
discharged into the atmosphere during burning of haz-
ardous occupational wastes in open pits [103].. A part 
of the dioxins are metabolized and eliminated from the 
human body while the rest gets stored in adipose tissue 
as body fat [102]. Hepatic P4501A1 enzyme oxygenates 
lyophilic compounds like dioxins by binding with ARNT, 
a xenobiotic-responsive element. It then gets translo-
cated to the nucleus and increases the expression of 
Cyp1a1 gene [104], which is responsible for converting 
polyacrylic aromatic hydrocarbons and aromatic amines 
into reactive metabolites. Dioxins are primarily classified 
as carcinogenic but they have also been known to cause 
non-carcinogenic complications like atherosclerosis, 
HDP, and GDM [104].

A multi-center prospective study evaluated the associa-
tion of organic pollutants, including dioxins, and GDM 
risk, in over 2000 women during early pregnancy and 
found a positive association between chlorinated poly-
chlorinated biphenyls (PCBs) and GDM [64]. Similarly, 
another study found that women with high serum lev-
els of PCBs had higher odds of developing GDM [105]. 
Dioxins have a similar structure to steroid hormones 
and can mimic natural hormone function, affecting the 
hypothalamus-pituitary axis and altering the endocrine 
functioning [102]. Recent shreds of evidence suggest that 
aryl hydrocarbon receptor (AHR) plays a vital role in 
the pathomechanism of dioxin intoxication [102]. Diox-
ins like TCDD block the synthesis of AHR and modulate 
the expression of estrogen-dependent genes leading to 
delayed embryonic development [102]. Experiments in 
genetic models of Ahr null mice demonstrate that dele-
tion of Ahr leads to a significant reduction in plasma 
insulin as well as an impairment in insulin sensitivity 
[106]. Furthermore, when pregnant mice were exposed 
to TCDD, they showed significant downregulation of 
serum adiponectin levels, thereby leading to an increase 
in GWG [107].

Blood levels of dioxin-like PCBs significantly corre-
late with the expression of miR-191 in pregnant women 
residing in areas with high environmental levels of diox-
ins [108] (Fig.  2). miR-191 is known to impair insulin 
signaling by decreasing the translocation of GLUT4 
in human fetal hepatocytes. Human peripheral blood 
mononuclear cells (PBMCs) also demonstrate a dioxin-
induced increase in miR-191. (Fig.  3). Dioxins can also 
alter the expression of miR-103 and miR-107 in primary 
human lung fibroblasts [103] (Fig.  2). The overexpres-
sion of miR-103 and miR-107 directly regulates insulin 
sensitivity and obesity by augmenting the expression of 
enzymes such as G6Pase, PEPCK, PC, and FB-(1,6)-Pases 
(Table  2). These enzymes act as indicators of increased 
gluconeogenesis and are the primary cause of elevated 
glucose levels [109], which contributes to the progression 
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of GDM. Apart from miRNA expression changes, prena-
tal exposure to dioxins like TCDD also augment global 
DNA methylation [110] as well as acetylated H3 levels 
[111]. Thus, dioxin exposure poses a risk for transgenera-
tional effects due to epigenetic alterations that will also 
affect future generations [112].

Parabens
Parabens are aliphatic esters of para-hydroxybenzoic acid 
which are widely used in pharmaceuticals, cosmetics, and 
as food preservatives to avoid the growth of hazardous 
bacteria and molds [113].. The most common parabens 
include methylparaben (MeP), ethylparaben (EtP), pro-
pylparaben (PrP), butylparaben (BuP), and benzyl-substi-
tuted para-hydroxybenzoic acid ester (BzP).

In a study, Ying et al., demonstrated that PrP concen-
trations were considerably higher in the urine of GDM 
patients with respect to normal pregnancies [114]. This 
is attributed to the stronger estrogenicity of PrP due to 
the presence of a side alkyl chain. PrP was also found 
to be associated with higher pre-pregnancy BMI lead-
ing to overweight/obesity among women [114]. Another 
study of over 1000 pregnant women found a correla-
tion between urinary EtP levels and GDM [115], while 
another cohort study found a positive association 
between BuP and glucose levels in both first and sec-
ond trimester [116]. In vitro studies show that a mixture 
of EDCs containing parabens had an adipogenic effect 
on 3T3L1 cells, murine preadipocyte cell line, defined 
by oil red O staining [117]. This effect was mediated by 
induction of transcription factors including CEBPα and 
PPARγ. MeP also increased glucose uptake and reduced 
lipolysis in 3T3L1 cells [118]. These adipogenic effects 
can lead to GWG, causing women to become more 
prone to GDM. Parabens also affect thyroid function as 
was shown by a study that found that the level of triiodo-
thyronine (T3) was negatively associated with BuP level 
while a decreased concentration of free thyroxine (FT4) 
was seen among patients with higher PrP concentrations 
[119], which indirectly affects the development of both 
obesity and insulin resistance (Fig. 3).

Parabens influence pregnancy outcomes by altering the 
expression of maternal microRNAs like miR-15a-5p and 
miR-185 [120] thereby causing oxidative stress, apop-
tosis, and insulin growth factor dysfunction in the pla-
centa thereby altering the expression of placental miRs. 
MiR-15a-5p was shown to be upregulated in the skeletal 
muscles of women with GDM [121]. It targets UCP2, 
which normally reduces mitochondrial ROS formation 
(Fig. 3). MiR-185 levels were demonstrated to be lower in 
the serum and placenta of women with GDM, suggesting 
that this miRNA could act as a non-invasive biomarker 
[122]. MiR-185 is also strongly associated with lipid 
metabolism and cholesterol homeostasis and thus, can 

influence adiposity and GWG. The levels of miR-185 also 
correlate with HOMA-IR and altered expression of miR-
185 is directly proportional to the expression of key insu-
lin signaling components like IRS-1, IRS-2, PI3K, and 
AKT2, which promotes insulin resistance [123] (Fig.  2). 
Beyond miRNAs, high paraben levels reduce DNA meth-
ylation at the Igf2 locus in the human placenta [124] and 
also alter sperm DNA methylation in rat models [125], 
suggesting a role for DNA methylation (Table 2), altered 
by the effect of parabens, to be passed from parents to 
offspring. Interventions on reducing exposure to these 
parabens like EtP and BuP by lifestyle modifications can 
positively greatly influence maternal thereby decreasing 
the prevalence of severe pregnancy outcomes [126].

Other relevant endocrine disruptors
Several other EDCs contribute to a pivotal role in the 
incidence of insulin resistance in pregnant women. 
Among these, some notable ones, as designated by the 
UNEP (United Nations Environment Programme) [83], 
and the effect of their exposure on pregnancy outcomes 
are discussed in this section.

Organo-chlorinated pesticides like p, p′-dichlorodiphe
nyldichloroethylene (DDE) and p, p′-dichlorodiphenyltri
chloroethane (DDT) are strongly associated with GDM. 
The presence of these chlorinated pesticides in the serum 
of women was found to be associated with increased 
risk of GDM, and these compounds are small enough to 
expose the fetus [127]. Mechanistically, these pesticides 
have induced pre-adipocyte differentiation in 3T3L1 cells 
by increasing the protein expression levels of C/EBPα, 
PPARγ, AMPKα, and ACC, thereby leading to obesity 
[128].

Occupational and environmental exposure to dicar-
boximide fungicides like vinclozolin, act as anti-androgen 
substances and play a significant role in disrupting the 
normal intra-uterine environment, thereby elevating the 
risk for the onset of reproductive, metabolic, and behav-
ioral disorders as demonstrated by a multi-generational 
rat model [129]. Another murine study showed that 
dietary exposure to fungicides like procymidone lead to 
adverse pregnancy outcomes like growth restriction and 
caused alterations in glucolipid metabolism in the F1 
generation [130].

Exposure of pregnant rats to herbicides like linu-
ron produces anti-androgenic activity and affects the 
placental-fetal unit, acting as a causative agent for fetal 
growth restriction and defects in male sexual differentia-
tion [131]. Drinking water acts as one of the prominent 
modes of exposure to herbicides and women exposed 
to herbicidal nitrates before and during pregnancy have 
an increased risk for not only GDM but also other preg-
nancy complications like small-for-gestational-age babies 
[132].
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Flame retardants like Poly-Brominated Diphenyl Esters 
(PBDE) are also endocrine disruptors that interfere 
with the intra-uterine environment of pregnant women. 
Maternal PBDE exposure was shown to increase the risk 
of cryptorchidism in a case-control study [133] and this 
was also associated with other maternal and fetal com-
plications like GDM, low birth weight, and prematurity 
[133]. Evidence from a human trial demonstrates that 
PBDEs readily cross the placenta and interfere with fetal 
liver development [134].

Exposure to alkylphenol ethoxylates like p-nonylphe-
nols can interfere with normal pregnancy outcomes, 
as was seen in a cohort study demonstrating women 
with increased levels of urinary nonylphenols had a sig-
nificantly shorter gestation period [135]. The study fur-
ther showed that nonylphenols significantly related to 
increased markers of oxidative and nitrosative stress in 
the placenta in pregnancies leading to HDPs like pre-
eclampsia. Additionally, urinary nonylphenols levels in 
women during all three trimesters are inversely corre-
lated with maternal weight gain, which leads to further 
pregnancy complications like small-for-gestational-age 
babies and preterm births [136].

Conclusion
The widespread use of EDCs across the globe has given 
rise to an inflation in the occurrence of GDM. Various 
pieces of evidence suggest that EDCs like BPA, phthal-
ates, PFAS, heavy metals, and others perturb signaling 
pathways, leading to GWG and GDM. EDC exposure 
during pregnancy further transmits these harmful 
chemicals to the fetus via the placenta, thus inducing 
pregnancy-related complications such as preeclampsia, 
preterm birth, and other metabolic, cardiovascular, and 
reproductive disorders among the infant. This propa-
gates a vicious cycle by having a lasting transgenerational 
impact. However, there is a dearth of epigenetic and 
translational studies associating EDC exposure and the 
development of GDM among pregnant women. Impor-
tantly, to manage the rising burden of GDM, research 
focus needs to be shifted toward clinical actions such 
as using various Exo-miRs as biomarkers to aid in early 
screening as well as timely intervention of GDM at the 
community level.

The deployment of integrated technologies such as fed-
erated-based learning systems using m-health platforms 
will analyze big data on a spatiotemporal scale, which 
forms the rationale for the precision-oriented detec-
tion of GDM along with automated clinical resource 
allocation. It will also increase our understanding of the 
patterns and processes associated with the preponder-
ance of niche-specific risk factors as well as variations 
in susceptibility to EDC-induced GDM. We believe that 
future research should focus on the detection of the 

EDC-specific ExomiRs for the diagnosis of GDM and 
identification of emergent GDM hotspots at the commu-
nity level. This would provide advice to the administra-
tors at the local, regional and national levels to develop 
and deploy niche-specific policies and programs. Finding 
the research gaps associated with EDC-induced GDM 
and working towards reducing them will help in signifi-
cantly alleviating the burden of GDM. Furthermore, since 
ExomiRs act as upstream regulators of proteins [137], 
an estimation of dysregulation in the expression levels 
of the EDC-associated ExomiRs in the first trimester of 
pregnancy can lead to better management of GDM. As 
of the currently practiced approaches like the oral glu-
cose tolerance test (IADPSG criteria: fasting plasma 
glucose ≥ 92  mg/dL, 1  h plasma glucose ≥ 180  mg/dL, 
2 h plasma glucose ≥ 153 mg/dL) and estimation of pro-
tein biomarkers of GDM like HbA1c (5.45%) [138–141]. 
These various screening criteria which are presently in 
use in clinical practice for the diagnosis of GDM gener-
ally detects the pathological condition in patients post-
20 weeks of gestation with the earliest detection being 
reported around 13–16 weeks of pregnancy [142]. This 
increases the necessity for the early diagnosis of GDM 
thereby leading to better management as well as reduc-
tion in the burden of GDM.
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