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Abstract 

Background The available evidence regarding the association of antioxidants, minerals, and vitamins with the risk 
of metabolic syndrome (MetS) traits is currently limited and inconsistent. Therefore, the purpose of this Mendelian 
randomization (MR) study was to investigate the potential causal relationship between genetically predicted antioxi-
dants, minerals, and vitamins, and MetS.

Methods In this study, we utilized genetic variation as instrumental variable (IV) to capture exposure data related 
to commonly consumed dietary nutrients, including antioxidants (β-carotene, lycopene, and uric acid), minerals 
(copper, calcium, iron, magnesium, phosphorus, zinc, and selenium), and vitamins (folate, vitamin A, B6, B12, C, D, 
E, and K1). The outcomes of interest, namely MetS (n = 291,107), waist circumference (n = 462,166), hypertension 
(n = 463,010), fasting blood glucose (FBG) (n = 281,416), triglycerides (n = 441,016), and high-density lipoprotein 
cholesterol (HDL-C) (n = 403,943), were assessed using pooled data obtained from the most comprehensive genome-
wide association study (GWAS) available. Finally, we applied the inverse variance weighting method as the result 
and conducted a sensitivity analysis for further validation.

Results Genetically predicted higher iron (OR = 1.070, 95% CI 1.037–1.105, P = 2.91E−05) and magnesium levels 
(OR = 1.130, 95% CI 1.058–1.208, P = 2.80E−04) were positively associated with increased risk of MetS. For each compo-
nent of MetS, higher level of genetically predicted selenium (OR = 0.971, 95% CI 0.957–0.986, P = 1.09E−04) was nega-
tively correlated with HDL-C levels, while vitamin K1 (OR = 1.023, 95% CI 1.012–1.033, P = 2.90E−05) was positively 
correlated with HDL-C levels. Moreover, genetically predicted vitamin D (OR = 0.985, 95% CI 0.978–0.992, P = 5.51E−5) 
had a protective effect on FBG levels. Genetically predicted iron level (OR = 1.043, 95% CI 1.022–1.064, P = 4.33E−05) 
had a risk effect on TG level.

Conclusions Our study provides evidence that genetically predicted some specific, but not all, antioxidants, minerals, 
and vitamins may be causally related to the development of MetS traits.
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Introduction
Metabolic syndrome (MetS) is a state characterized by 
a cluster of metabolic abnormalities, including hyper-
tension, hyperglycemia, dyslipidemia, and abdominal 
obesity, which collectively increase the risk of cardio-
vascular disease and type II diabetes [1]. With a preva-
lence ranging from 10 to 50% among adults worldwide 
[2], MetS poses a significant threat to global health, 
with alarming rates in specific populations, particularly 
among elderly individuals in the United States [3]. The 
escalating prevalence of MetS and its association with 
increased mortality have made it a substantial burden 
on public health care systems and national finances [4, 
5].

One of the key hallmarks of MetS is insulin resistance, 
resulting from various lifestyle factors such as aging, 
obesity, sedentary behavior, smoking, and sleep apnea 
[6]. Insulin resistance leads to elevated levels of reactive 
nitrogen oxides (RONS) and pro-inflammatory cytokines, 
triggering the activation of c-Jun N-terminal kinases 
(JNK1), nuclear factor kappa-light-chain-enhancer of 
activated B cells (NF-κB), and mitogen-activated pro-
tein kinase (MAPK) [7]. Consequently, oxidative stress 
occurs when there is an imbalance between the excessive 
production of reactive oxygen species (ROS) and reac-
tive nitrogen species (RNS) and the body’s antioxidant 
defense system [8]. This oxidative stress damages cellular 
components, such as lipids, proteins, and DNA, contrib-
uting to the development of various metabolic distur-
bances [9].

The potential roles of antioxidants, minerals, and vita-
mins in maintaining cellular health, reducing oxidative 
stress, and modulating metabolic pathways have been 
subjects of extensive research. These essential micronu-
trients have garnered considerable attention due to their 
proposed protective effects against specific cancers and 
other chronic diseases. Clinical data analysis has revealed 
low serum levels of retinyl esters, vitamin C, and carote-
noids in MetS patients [10]. Moreover, growing evidence 
suggests that high intakes of nutrients, such as vitamin C 
[11], vitamin D [12] and calcium [13], could inhibit oxi-
dative stress processes. Vitro experiments have shown 
that certain antioxidant nutrients reverse the inflamma-
tory response caused by oxidative stress [14]. However, 
results from clinical trials examining the effectiveness 
of antioxidants as disease preventive agents have been 
inconsistent, with some even showing potential harm 
[15, 16]. These discrepancies may be attributed to limita-
tions in observational studies (such as residual confound-
ing and reverse causality) and challenges in randomized 
control trials, including low treatment compliance, inad-
equate dosages, short trial durations, and insufficient sta-
tistical power.

To overcome the bias of previous studies, we improved 
the study design through Mendelian randomization (MR) 
analysis, using genetic variation as an instrumental vari-
able (IV), to establish reliable causal inferences between 
genetically predicted antioxidant, vitamin and mineral 
exposure levels and risk for MetS traits. By leverag-
ing genetic variants as proxies for antioxidant, mineral, 
and vitamin levels, we aimed to obtain more robust and 
unbiased estimates of the potential causal effects of these 
micronutrients on MetS traits, thus contributing to a bet-
ter understanding of preventive strategies for MetS and 
related conditions.

Materials and methods
Study design
An overview of the study design and the assumptions of 
the MR study are shown in Fig. 1. MR is a genetic instru-
mental variable analysis that uses SNPs as IVs for risk 
factors of interest. SNPs are randomly assigned at meio-
sis and are therefore not subject to reverse causality bias. 
Firstly, we obtained available genetic variants for antioxi-
dants, minerals and vitamins from a large-scale GWAS. 
Secondly, we selected pooled data from the GWAS 
meta-analysis for MetS and its components including 
waist circumference (WC), hypertension, fasting blood 
glucose (FBG), triglycerides (TG) and high-density lipo-
protein cholesterol (HDL-C). Finally, a two-sample MR 
analysis and sensitivity analysis were performed to assess 
the causal relationship between exposure to dietary 
sources and the risk of MetS and its components. The 
MR depended on three key assumptions: (1) IVs are sig-
nificantly associated with the exposure of interest; (2) IVs 
are not associated with any confounders of the exposure-
outcome association; and (3) IVs affect outcome through 
exposure only [17].

Details of the data sources used in this study are sum-
marized in Additional file 1: Table S1. To minimize racial 
mismatch, our analyzes were restricted to participants of 
European descent, all studies have been approved by the 
relevant institutional review boards, and informed con-
sent have been obtained from the participants.

Data sources for antioxidants, minerals, and vitamins 
and selection of instrumental variables
We searched PubMed and the GWAS catalogue for 
newly published GWAS studies on circulating levels of 
diet-related antioxidants, minerals and vitamins in pop-
ulations of European descent. Taking into account the 
accessibility of the exposed GWAS studies and the need 
to reduce sample duplication with outcome data, 18 cir-
culating nutrients were identified: antioxidants (lycopene 
[18], uric acid [19] and beta-carotene [20]), minerals 
(calcium [21], copper [22], iron [23], magnesium [24], 
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phosphorus [25], selenium [26] and zinc [22]) and vita-
mins (vitamin A [27], vitamin K1 [28], vitamin E [29], 
vitamin D [30], vitamin C [31], vitamin B6 [32], vitamin 
B12 [33] and folate [33]).

For each exposure factor, eligible IVs were selected 
based on the three main assumptions of MR. Firstly, 
we included SNPs that met a genome-wide significance 
threshold (P < 5 ×  10–8), and for those exposures detected 
by < 2 SNPs, suggestively significant genome-wide asso-
ciations significant (P < 1 ×  10–5) or validated SNPs were 
included if available. rs2108622 and rs11057830 were 
excluded due to F < 10. We displayed the SNPs associated 
with antioxidants, vitamins and minerals in Additional 
file 1: Table S2, and selected a total of 161 SNPs as IVs for 
the levels of three types of circulating nutrients.

Data sources for MetS and its components
We used the most comprehensive GWAS summary-level 
data from UK Biobank [34], including 291,107 individuals 

(59,677 cases and 231,430 controls) with missing data 
for genotype, outcome and covariates. Individuals were 
defined as having MetS by meeting three or more of the 
following five criteria: blood pressure ≥ 130/85  mmHg 
or taking antihypertensive medication, serum glu-
cose ≥ 6.1  mmol/L or taking glucose-lowering medica-
tion, serum triglycerides ≥ 1.7  mmol/L, WC > 102  cm 
in men and > 88  cm in women, HDL-C < 1.0  mmol/L in 
men and < 1.3 mmol/L in women. This GWAS data were 
adjusted for age, sex, 10 principal components and geno-
typing batches.

For waist circumference, we extracted GWAS sum-
mary data from the Medical Research Council Integrated 
Epidemiology Unit (MRC-IEU) [35], which included 
462,166 subjects of European ancestry; for hypertension, 
summary statistics were also available from the MRC-
IEU [35], which included 463,010 subjects; for FBG, 
pooled level data were obtained from the meta-analysis 
of glucose and insulin-related traits (MAGIC) [36], which 

Fig. 1 A flowchart of study design. Assumption 1 suggests that the genetic variants proposed as instrumental variables should be closely 
associated with the antioxidants, minerals and vitamins, SNPs should be associated with these circulating nutrients at the level of genome-wide 
significance (P < 5 ×  10–8); for those traits detected by < 2 SNPs, include genome-wide associations significant for suggestive significance (P < 1 ×  10–

5) or validated SNPs, if available; Assumption 2 suggests that the genetic variants used should not be associated with potential confounders, 
and Assumption 3 suggests that the genetic variants selected should affect the risk of the outcome only through the risk factor and not through 
other pathways. MetS indicates metabolic syndrome; WC: waist circumference; HDL-C: high-density lipoprotein cholesterol; FBG: fasting blood 
glucose; TG: triglycerides; IVW: inverse-variance weighted
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included 281,416 individuals; for TG and HDL-C, sum-
mary-level statistics were extracted from the UK Biobank 
of over 400,000 participants [37]. To our knowledge, 
there was no sample overlap between exposure and out-
come GWAS.

Statistical analysis
The inverse variance weighting (IVW) method was used 
as the primary outcome of the MR analysis. For expo-
sures with more than 3 SNPs, the estimates of variance 
were then combined using a random multiplicative 
effects inverse variance weighting method. For exposures 
detected by only 2 SNPs, a fixed-effects inverse variance 
weighting method was used. If the exposure had only 1 
SNP, the Wald ratio method was performed, where the 
SNP-outcome association estimate was divided by its 
SNP-exposure association estimate to obtain a causal 
relationship.

In this study, Cochrane’s Q test, the weighted median 
[38], Egger regression intercept [39] and MR-PRESSO 
global test [40] were used for sensitivity analysis to 
further examine heterogeneity and horizontal poly-
morphism. Cochrane’s Q test was used to quantify het-
erogeneity across instrumental variables. A weighted 
median model could provide consistent estimates if 
at least 50 percent of the weights come from effective 
instrumental variables. MR-Egger intercept test was 
used to characterize the potential horizontal polymor-
phism. In addition, MR-PRESSO method could identify 
horizontal pleiotropic outliers for SNPs and provide the 

same results as IVW in the absence of outliers. Based 
on the above analysis, we used IVW as the main causal 
effect estimate and considered the consistency of all MR 
methods.

Statistical analyzes were performed using RStudio 
(version 4.2.1) and the R package "TwoSampleMR" and 
results were expressed as odds ratios (OR) and corre-
sponding 95% CIs. Because of multiple comparisons, 
the significance level was corrected using the Bonferroni 
method. P value < 4.63 ×  10–4 was considered a strong 
association, a P value between 4.63 ×  10–4 and 0.05 was 
considered a potential association, and the P-values were 
two-sided.

Results
Study overview
The current study assessed the causal impact of 18 genet-
ically predicted antioxidants, minerals and vitamins in 
MetS traits such as WC, hypertension, HDL-C, FBG and 
TG. After a rigorous SNP filtering procedure, the number 
of SNPs finally used for each exposure varied from 1 to 81 
(Additional file 1: Table S1). The F-statistic ranged from 
11 to 10,000, suggesting that bias due to the use of weak 
instruments was unlikely (Additional file 1: Table S2). In 
the main analysis, 6 strongly causal and 15 potentially 
causal features were identified (Fig. 2).

The causal role of antioxidants in MetS and its components
As to antioxidants, potential evidence was obtained for 
higher genetically predicted beta-carotene (OR per 1 SD 

Fig. 2 Primary analysis of associations between antioxidants, minerals and vitamins and MetS traits. MetS indicates metabolic syndrome; WC: waist 
circumference; HDL-C: high-density lipoprotein cholesterol; FBG: fasting blood glucose; TG: triglycerides
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increase in log-transformed ug/L, 0.900 [0.831–0.976]) 
with lower risk of MetS and higher genetically pre-
dicted uric acid levels with higher risks of MetS (OR per 
1 mg/dL increase, 1.068 [1.002–1.138]) and hyperten-
sion (OR per 1 mg/dL increase, 1.015 [1.006–1.023]). A 
higher genetically predicted beta-carotene (OR per 1 SD 
increase in log-transformed ug/L, 0.973 [0.949–0.997]) 
was associated with lower odds of TG level (Fig. 3).

The causal role of minerals in MetS and its components
Among minerals levels, genetically predicted higher 
selenium levels were associated with a decreased risk 
of HDL-C, whereas genetically predicted iron and mag-
nesium levels were positively associated with the risk 
of MetS (Fig. 4). The ORs per SD increase in genetically 
predicted circulating levels of these minerals were 0.971 
(95% CI 0.957–0.986; P = 1.09E−04) for selenium in HDL-
C, 1.070 (95% CI 1.037–1.105; P = 2.91E−05) for iron 
in MetS and 1.130 (95% CI 1.058–1.208; P = 2.80E−04) 
for magnesium in MetS. There was clear evidence that 
genetically determined iron was causally associated with 
TG (OR = 1.043, 95% CI 1.022–1.064, P = 4.33E−05).

We found a suggestive causal effect of copper 
(OR = 1.014, 95% CI 1.002–1.026, P = 0.020) and selenium 
(OR = 1.022, 95% CI 1.009–1.035, P = 0.001) on the risk of 
WC. Potential evidence showed that genetic liability to 
selenium was positively related to MetS (OR = 1.063, 95% 
CI 1.006–1.124, P = 0.031) and FBG (OR = 1.011, 95% 
CI 1.004–1.018, P = 0.002), while phosphorus negatively 
associated with FBG (OR = 0.961, 95% CI 0.926–0.998, 
P = 0.036).

The causal role of vitamins in MetS and its components
Among vitamins levels, higher genetically predicted 
vitamin K1 levels were associated with an elevated 
risk of HDL-C levels (OR = 1.023, 95% CI 1.012–1.033, 
P = 2.90E-05), whereas genetically predicted vitamin D 
levels were negatively associated with risk of FBG levels 
(OR = 0.985, 95% CI 0.978–0.992, P = 5.51E−05) (Fig. 5).

There was suggestive evidence that genetically deter-
mined vitamin K1 level was causally associated with 
MetS (OR = 0.937, 95% CI 0.906–0.969, P = 0.003), FBG 
(OR = 1.005, 95% CI 1.002–1.009, P = 0.004) and TG 
(OR = 0.979, 95% CI 0.964–0.994, P = 0.005). Higher 
genetically predicted folate levels were associated with 

Exposure&Outcome OR (95%CI) P  value
Beta-Carotene (μg/ L)
  MetS 0.900 (0.831-0.976) 0.010
  WC 0.991 (0.970-1.013) 0.429
  Hypertension 1.002 (0.994-1.010) 0.625
  HDL-C 1.019 (0.996-1.043) 0.103
  FBG 0.991 (0.970-1.012) 0.399
  TG 0.973 (0.949-0.997) 0.027
Lycopene (μg/L)
  MetS 1.009 (0.994-1.023) 0.231
  WC 0.996 (0.990-1.002) 0.157
  Hypertension 1.000 (0.995-1.004) 0.882
  HDL-C 1.000  (0.988-1.008) 0.698
  FBG  1.005 (0.989-1.021) 0.542
  TG 0.998 (0.992-1.004) 0.530
Uric acid (mg/dL)
  MetS  1.068 (1.002-1.138) 0.044
  WC 1.027 (0.997-1.059) 0.078
  Hypertension 1.015 (1.006-1.023) 0.001
  HDL-C 0.980 (0.956-1.004) 0.103
  FBG 1.014 (0.993-1.035) 0.204
  TG 1.028 (0.997-1.059) 0.077

0.8 0.9 1 1.1 1.2
Fig. 3 Associations of genetically predicted circulating antioxidants with risk of MetS and its components using the inverse-variance 
weighted mendelian randomization method. Estimated ORs represent the effect per unit increase in ln-transformed β-carotene, 1 μg/dL 
lycopene, and 1 mg/dL uric acid on MetS traits. The blue circles represent the OR and horizontal lines represent the 95% CI of the OR. P values 
below the Bonferroni-corrected threshold of 4.63 ×  10–4 are displayed in bold and suggestive P values between 0.05 and 4.63 ×  10–4 are displayed 
in bold-italic. OR indicates odds ratio; CI: confidence interval; MetS: metabolic syndrome; WC: waist circumference; HDL-C: high-density lipoprotein 
cholesterol; FBG: fasting blood glucose; TG: triglycerides
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Fig. 4 Associations of genetically predicted circulating minerals with risk of MetS and its components using the inverse-variance weighted 
Mendelian randomization method. Estimated ORs represent the effect per unit increase in ln-transformed copper, 1 sd iron, zinc, selenium, 
magnesium, phosphorus, and folate on MetS traits. The blue circles represent the OR and horizontal lines represent the 95% CI of the OR. P values 
below the Bonferroni-corrected threshold of 4.63 ×  10–4 are displayed in bold and suggestive P values between 0.05 and 4.63 ×  10–4 are displayed 
in bold-italic. OR indicates odds ratio; CI: confidence interval; MetS: metabolic syndrome; WC: waist circumference; HDL-C: high-density lipoprotein 
cholesterol; FBG: fasting blood glucose; TG: triglycerides
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a decreased risk of hypertension (OR = 0.983, 95% CI 
0.970–0.996, P = 0.008), whereas genetically predicted 
vitamin E levels were positively associated with the 
disease (OR = 1.027, 95% CI 1.009–1.045, P = 0.003). 

Genetically predicted vitamin B12 levels were positively 
associated with the risk of FBG (OR = 1.022, 95% CI 
1.003–1.041, P = 0.020).

Exposure&Outcome OR (95%CI) P  value

Folate (nmol/L)
  MetS 0.939 (0.828-1.065) 0.329
  WC 1.026 (0.991-1.062) 0.146
  Hypertension  0.983 (0.970-0.996) 0.008
  HDL-C 1.037 (1.000-1.076) 0.051
  FBG 0.981 (0.948-1.014) 0.258
  TG 0.974 (0.939-1.011) 0.166
Vitamin A (μg/L)
  MetS 0.987 (0.888-1.096) 0.800
  WC  1.005 (0.976-1.034) 0.742
  Hypertension  0.997 (0.992-1.001) 0.159
  HDL-C 1.020 (0.916-1.136) 0.715
  FBG 1.030 (1.000-1.061) 0.051
  TG 1.038 (0.993-1.085) 0.102
Vitamin B12 (ρmol /L)
  MetS 0.994 (0.961-1.029) 0.739
  WC 0.991 ( 0.981-1.002) 0.107
  Hypertension 1.004 (0.999-1.009) 0.130
  HDL-C 1.010 (0.993-1.028) 0.256
  FBG 1.022 (1.003-1.041) 0.020
  TG 0.990 (0.971-1.009) 0.288
Vitamin C (μmol / L)
  MetS 1.042 (0.958-1.133) 0.335
  WC 0.994 (0.970-1.018) 0.606
  Hypertension 1.005 (0.992-1.017) 0.480
  HDL-C 0.975 (0.943-1.007) 0.128
  FBG 1.010 (0.990-1.030) 0.331
  TG 1.021 (0.972-1.073) 0.402
Vitamin E (mg/L)
  WC 0.999 (0.953-1.046) 0.952
  Hypertension 1.027 (1.009-1.045) 0.003
Vitamin D (nmol/L)
  MetS 1.016 (0.972- 1.061) 0.489
  WC 1.008 (0.992-1.025) 0.338
  Hypertension  0.999 (0.993-1.004) 0.582
  HDL-C 1.013 (0.994-1.031) 0.176
  FBG 0.985 (0.978-0.992) 5.51E-05
  TG 0.995 (0.964-1.026) 0.737
Vitamin K1 (nmol/L)
  MetS 0.937 (0.906-0.969) 0.003
  WC 0.989 (0.975-1.003) 0.126
  Hypertension 0.999 (0.993-1.005) 0.767
  HDL-C 1.023 (1.012-1.033) 2.90E-05
  FBG 1.005 (1.002-1.009) 0.004
  TG 0.979 (0.964-0.994) 0.005
Vitamin B6 (ρmol/L)
  MetS 1.001 (0.992-1.010) 0.861
  WC 1.000 (0.998-1.003) 0.934
  Hypertension 0.999 (0.998-1.000) 0.108
  HDL-C 1.000 (0.997-1.002) 0.945
  FBG 1.001 (0.998-1.003) 0.582
  TG 1.002 (0.999-1.005) 0.138

0.8 0.9 1 1.1 1.2

Fig. 5 Associations of genetically predicted circulating vitamins with risk of MetS and its components using the inverse-variance weighted 
Mendelian randomization method. Estimated ORs represent the effect per unit increase in ln-transformed vitamin A and vitamin K1, 1 SD vitamin 
B6, vitamin B12, vitamin C, vitamin E and vitamin D on MetS traits. The blue circles represent the OR and horizontal lines represent the 95% 
CI of the OR. P values below the Bonferroni-corrected threshold of 4.63 ×  10–4 are displayed in bold and suggestive P values between 0.05 
and 4.63 ×  10–4 are displayed in bold-italic. OR indicates odds ratio; CI: confidence interval; MetS: metabolic syndrome; WC: waist circumference; 
HDL-C: high-density lipoprotein cholesterol; FBG: fasting blood glucose; TG: triglycerides
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Robustness of the results
To identify potential violations of the assumptions under-
lying MR, we performed sensitivity analyses employing 
three distinct methods: MR-Egger, weighted-median MR, 
and MR-PRESSO. Cochrane’s Q test has not shown sig-
nificant heterogeneity among the 6 strong causal asso-
ciations. Weighted-median MR methods demonstrated 
consistent directions and similar effect estimates to IVW, 
except for the association between vitamin D and FBG 
levels. Furthermore, MR-Egger regression detected no 
evidence of directional pleiotropy for any outcome other 
than uric acid and WC or hypertension, and MR-Egger 
had pleiotropic P values > 0.05 after excluding outliers. 
As for potential associations, results from the sensitiv-
ity analyses of uric acid and vitamin K1 for MetS and its 
components were generally consistent with the primary 
analysis, though they did not always reach a significant 
level. The direction of the association did not alter after 
removing outliers in the MR-PRESSO analysis (Addi-
tional file 1: Tables S3–S7).

Discussion
In this MR analysis, we have presented compelling evi-
dence suggesting that genetically predicted higher levels 
of circulating iron and magnesium were associated with 
an increased risk of MetS. Regarding individual MetS 
components, we found an inverse relationship between 
genetically predicted selenium levels and HDL-C lev-
els. Additionally, genetically predicted vitamin D levels 
were inversely associated with FBG levels. Conversely, 
we observed positive associations between genetically 
predicted vitamin K1 levels and HDL-C levels, as well as 
between iron levels and TG levels. Suggestive evidence 
supported associations between genetically predicted 
beta-carotene, uric acid, selenium, circulating folate, vita-
min B12, vitamin E and vitamin K1 and MetS traits.

The potential link between beta-carotene and a reduced 
risk of MetS has garnered support from previous obser-
vational studies [41]. A cross-sectional study involving 
adolescents aged 12–19  years consistently found lower 
beta-carotene concentrations in the group with MetS 
compared to the group without the syndrome [42]. The 
underlying mechanisms proposed to explain this associa-
tion include the direct impact of β-carotene on adipocyte 
function through its intracellular metabolites, retinalde-
hyde, and all-trans retinoic acid, both acting as ligands 
for nuclear receptors, which in turn repress adipogen-
esis [43]. Furthermore, compelling evidence suggested 
a correlation between genetic susceptibility to uric acid 
and an increased MetS risk, a finding consistent with 
prior prospective studies [44]and meta-analyses [45]. 
Yuan et  al.’s meta-analysis, encompassing diverse popu-
lations, revealed a 30% rise in MetS risk for every 1 mg/

dL increase in uric acid levels, demonstrating a notable 
linear dose–response relationship [45]. Additionally, Liu 
et al. unveiled a consistent and linear causal connection 
between heightened uric acid and the incidence of MetS, 
leading to the postulation of uric acid as a prospective 
individualized predictor for identifying systemic/hepatic 
metabolic abnormalities [46]. Therefore, lowering uric 
acid levels may be a potential therapeutic approach to 
prevent complex metabolic disorders.

Data on the associations of vitamins with MetS traits 
are scarce. We observed that genetic predisposition to 
higher vitamin K1 levels were associated with a decreased 
risk of low HDL-C level. Evidence from a cross-sectional 
and longitudinal analysis of a ten-year follow-up cohort 
suggests that high menaquinone intake and high vitamin 
K levels were associated with a lower incidence of MetS 
[47]. These associations were primarily driven by triglyc-
erides and waist circumference. A cross-sectional study 
examined the relationship between phylloquinone intake 
and MetS and found that high phylloquinone intake 
was associated with lower prevalence of MetS (odds 
ratio = 0.72; 95% CI 0.25–2.09), although the association 
did not reach statistical significance [48]. Pan and Jackson 
[48] also studied the components of MetS and found that 
high phylloquinone intake was associated with a lower 
risk of low HDL-C, hypertriglyceridemia, and hypergly-
cemia. Epidemiological data concerning the association 
between vitamin D and FBG levels have produced incon-
sistent results, with both positive [49] and null findings 
[50] reported. Our study provides evidence supporting a 
causal role for vitamin D in MetS traits. In contrast, our 
study provides compelling evidence supporting a causal 
role for vitamin D in MetS traits. This role may be attrib-
uted to the mechanism of action of vitamin D on various 
physiological parameters. These mechanisms include the 
improvement of arterial stiffness, reduction of renin–
angiotensin–aldosterone system activity, modulation of 
parathyroid hormone levels, regulation of inflammatory 
cytokines, enhancement of lipoprotein lipase activity, 
and promotion of improved phospholipid metabolism 
and mitochondrial oxidation [51]. Researches on vitamin 
K1 levels and FBG levels has not yet reached a unified 
conclusion. A randomized, controlled, crossover study 
inhibiting serum undercarboxylated osteocalcin (ucOC) 
by consumption of green leafy vegetables had no negative 
effects on glycemic status [47]. Therefore, further explor-
atory basic science or clinical inquiries are warranted to 
comprehensively understand the mechanism by which 
vitamin K1 contributes to the elevation of FBG levels.

The role of folate in hypertension risk has been pre-
viously noted. In line with our MR study results, a pro-
spective cohort study involving 93,803 younger women 
aged 27 to 44  years from the Nurses’ Health Study II 
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and 62,260 older women aged 43 to 70  years from the 
Nurses’ Health Study I demonstrated that higher total 
folate intake was associated with a reduced risk of inci-
dent hypertension, especially among younger women 
[52]. Mechanistically, folate deficiency can lead to the 
blockage of insulin synthesis and secretion in cultured β 
cells due to increased reactive oxygen species production 
and pro-apoptotic changes [53]. Conversely, folic acid 
has been shown to improve beta cell function by reduc-
ing oxidative stress, which is believed to contribute to 
the reduced risk of cardiovascular disease and diabetes 
by lowering insulinemia [54]. As for vitamin E, evidence 
from prospective cohort based on 24-h dietary records 
revealed a reverse J-shaped association between dietary 
vitamin E intake and new-onset hypertension in general 
Chinese adults [55]. As our MR study was not specifically 
designed to detect nonlinear associations, we can only 
infer that excessive vitamin E intake may be a causal risk 
factor for hypertension. Furthermore, our study’s novel 
finding of a statistically potentially positive association 
between genetically predicted circulating vitamin B12 
levels and FBG warrants confirmation through further 
research.

The role of minerals on MetS traits has been explored 
in previous observational studies [56, 57]. Findings from 
a cross-sectional study with 5323 participants from four 
Chinese megacities indicated that a positive association 
between high dietary iron intake and metabolic abnor-
malities [56]. Additionally, animal experiments have 
suggested that elevated dietary iron intake may lead to 
insulin resistance and oxidative stress [57]. Laboratory 
studies have provided insights into a possible mechanism, 
indicating that free iron possesses strong pro-oxidative 
properties, leading to oxidative damage and apoptosis 
through Fenton chemistry, resulting in the generation of 
RONs [58]. Contrasting our results, dietary magnesium 
intake has been reported to show an inverse association 
with MetS risk in studies conducted on both US [59] and 
Arab adults [60]. However, another Italian cross-sec-
tional study did not observe such a statistical association 
[61]. In a 32-participant double-blind, placebo-controlled 
randomized study, the supplementation of magnesium 
did not substantially alter cardiometabolic biomarkers 
[62]. We posit that the disparities in findings could be 
attributed to magnesium’s interplay with other nutrients. 
Interestingly, utilizing a validated genetic instrument, we 
observed that a genetic predisposition to high circulat-
ing magnesium was associated with an increased risk of 
MetS, suggesting that disturbances in magnesium metab-
olism may play a role in the pathological process of MetS 
pathogenesis.

The epidemiological data on the association between 
selenium and HDL-C levels show inconsistency, with 

both positive and null results reported. Our study pro-
vides evidence supporting a causal role for selenium in 
MetS traits. Recently, a case–control study from China 
discovered a positive association between selenium and 
MetS [63]. A recent meta-analysis demonstrated a posi-
tive relationship between selenium exposure and dia-
betes in epidemiological and experimental studies [64]. 
The positive association between selenium and hypergly-
cemia aligns with previous evidence that high selenium 
may have a diabetogenic effect. Our findings are con-
sistent with this, as we observed that higher genetically 
predicted selenium levels were associated with increased 
odds of hypertriglyceridemia and a lower risk of develop-
ing low HDL-C levels [65]. The underlying mechanism 
explaining this association lies in the impact of selenium 
levels on the expression and activity of selenoproteins 
[66]. Excessive selenium levels may lead to an upsurge in 
ROS production, attributed to the increase of inorganic 
selenium in plasma [67]. The subsequent increase in ROS 
can lead to oxidative stress and insulin resistance [68], 
both of which are potential etiology of MetS.

The present study has several strengths, one of the 
main ones being the MR design. The study design 
reduced residual confounding and reversed causality, and 
strengthened causal inferences in the observed exposure-
MetS traits associations. Another strength is that we have 
implemented the most comprehensive exposure dataset 
and the broadest summary-level data on MetS and its 
components, with no or very limited overlap between 
exposure and outcome data, so the ability to investigate 
causality is high, the type I error rate is low, and the esti-
mated magnitude of effect is more accurate. The existing 
literature on the efficacy of micronutrient supplementa-
tion as a treatment for metabolic disorders is currently 
limited, comprising only a handful of small-scale studies 
focusing on specific patient subgroups. This scarcity of 
evidence poses challenges in formulating precise recom-
mendations regarding nutritional supplementation. The 
results of this study will complement the evidence from 
current observational studies supporting causal relation-
ships between circulating micronutrients and the devel-
opment of metabolic disorders, which will contribute 
to the field of research in the nutritional prevention of 
MetS.

However, our study also has limitations. Firstly, we 
still cannot eliminate potential pleiotropic effects 
that may be masked by a few instrumental variables, 
although MR-egger intercepts showed little horizontal 
pleiotropy. Secondly, heterogeneity for some exposures 
was indicated by Cochran’s Q values in the MR analy-
sis. We therefore performed the MR-PRESSO analysis 
and the results indicated the stability of the observed 
associations. Thirdly, we restricted our analysis to 
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individuals of European ancestry, which reduced poten-
tial bias introduced by demographics but limited the 
generalizability of our findings to other populations.

In conclusion, the results provided by this MR study 
support a causal relationship between multiple antioxi-
dants, vitamins, and minerals and the risk of MetS and 
its components. Strategies targeting these modifiable 
factors, avoiding excessive urid acid, iron, magnesium, 
and selenium intake and increasing beta-carotene, 
vitamin K1 intake, can prevent MetS and lipid abnor-
malities and reduce the corresponding disease burden, 
and increasing vitamin D intake can reduce FBG level. 
Vitamin K1 have the potential to be chemoprotection 
against the pathogenesis of MetS traits. Our research 
might contribute significantly to the development of 
evidence-based recommendations for nutritional sup-
plementation strategies targeting metabolic disorders.
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