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pro-inflammatory cytokines [2, 3]. Inflammatory disor-
ders in T2D are progress due to adipose tissue dysfunc-
tion [4–6].

It has been observed that T2D is associated with the 
development of many neuropsychiatric disorders such 
as depression [7]. Of note, T2D increases incidence 
of depression by 29%, this percentage may rise to 53% 
in T2D patients treated by insulin [8, 9]. In insulin-
dependent T2D patients as the disease advanced, the 
depression risk is augmented [10]. Findings from epide-
miological studies observed that comorbidity of T2D and 
depression is twice as common as either of these alone 
[11]. These findings implicate insulin as a causative factor 
in depression neuropathology.

Furthermore, progression of painful neuropathy in T2D 
patients is regarded as strong predictor for the develop-
ment of depression [12]. Dziemidok et al. [13] described 
that hyperglycemia-induced neurochemical inequity 
activates the progression of depression in T2D patients 
with diabetic peripheral neuropathy. T2D-induced 
hyperglycemia, oxidative stress, and neuroinflammation 
stimulate the development of depression-like behavior 

Introduction
Type 2 diabetes (T2D) is a metabolic disease caused by 
the development of insulin resistance (IR) and and rela-
tive insulin deficiency [1]. T2D is linked with chronic 
low-grade inflammatory disorders due to hypergly-
cemia-induced oxidative stress and the release of 
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Abstract
Type 2 diabetes (T2D) is a metabolic disease caused by the development of insulin resistance (IR), relative insulin 
deficiency, and hyperglycemia. Hyperglycemia-induced neurochemical dysregulation activates the progression 
of depression in T2D patients. Therefore, management of depression by antidepressant agents improves glucose 
homeostasis and insulin sensitivity. However, prolong use of antidepressant drugs may increase the risk for 
the development of T2D. However, there is strong controversy concerning the use of antidepressant drugs in 
T2D. Therefore, this review try to elucidate the potential effects of antidepressant drugs in T2D regarding their 
detrimental and beneficial effects.
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in diabetic mice [14]. T2D often results in a number of 
complications leading to impairment of brain function 
and the development of depression. However, the poten-
tial mechanisms for T2D-related cognitive deficits and 
depression are not fully understood.

The critical factor considered in a depression induced 
by T2D is the inflammation which elicits neuronal injury 
in the hippocampus, amygdala, and thalamic [14]. There-
fore, inhibiting of inflammatory reactions in the brain 
and reducing neuronal injury can alleviate depression 
in rodents suffering from T2D [15]. Chen et al. [16] 
displayed that rodent models of streptozotocin (STZ)-
induced diabetes, experience depressive behaviors.

In clinical setting, hyperglycemia a hallmark of T2D 
increases depression severity as documented from a 
cross-sectional study [17]. Obesity and T2D lead to emo-
tional disorders and development of depression [18]. 
A systematic review and meta-analysis exhibited that 
1:3 woman and 1:5 men with T2D and obesity experi-
ence depressive symptoms [19]. In addition, a system-
atic review demonstrated that T2D patients were related 
with the progress of depression [19]. Van-Sloten et al. 
[20] reported that cerebral microvascular dysfunction 
in T2D patients triggers the development of depres-
sion. The prevalence of depression in T2D patients has 
been the subject of many studies and existing systematic 
reviews from which the key findings were the prevalence 
of depression was significantly higher in people with 
T2D patients compared to those without [19]. Diabetic 
distress-induced depression is found in 4.5% of T2D 
patients that exacerbate brain glucose dysregulation [21]. 
Notoriously, depression is more common in individu-
als younger than 65 years in about 31% compared with 
21% in elderly [22]. Remarkably, 1 in 4 T2D patients have 
depressive symptoms [22, 23]. A study included hospital-
ized T2D patients disclosed that 70(49.2%) had depres-
sion [24]. Therefore, management of these disorders is 
necessary to ensure life expectancy and quality [24]. The 
risk of depression in women with T2D patients is higher 
than men with T2D patients [23, 25].

Furthermore, depression and T2D are associated with 
dysregulation of the hypothalamic-pituitary-adrenal 
(HPA) pathway which regulate immune function and 
brain glucose metabolism [26].Preclinical study indicated 
that glycolysis was increased while the Krebs cycle was 
decreased in the brain of a prenatal stress animal model 
of depression [27]. Depression is generally associated 
with frontal hypometabolic activity and hypermetabo-
lism in certain limbic regions [28]. A prospective study 
on 13 depressive patients showed that paroxetine therapy 
improve brain glucose metabolism [28]. Besides, IR a 
hallmark of T2D, could develop in the brains of depres-
sive patients [29]. The possible molecular mechanisms 
associating defective brain insulin signaling with reward 

system, neurogenesis, synaptic plasticity, and HPA stress 
axis have been observed in depression [29]. A post-mor-
tem analysis in the brain of patients diagnosed with men-
tal illness observed a correlation between gene expression 
of the dopaminergic system and the insulin signaling 
[30]. Thus, there is a direct correlation between brain 
insulin dysfunction and depressive behavior. In addition, 
brain IR and glucose dyshomeostasis affect brain seroto-
nergic neurons, leading to the development of depressive 
symptoms [31]. Therefore, antidiabetic drugs may have 
antidepressant-like effects and, conversely, that seroto-
nergic antidepressants may impact glucose homeostasis 
[31].

Indeed, T2D patients with depression are at higher 
risk for developing diabetic microvascular complications 
[32]. T2D patients with psychological stress and depres-
sion are linked with poor diabetic care and poor glycemic 
control [33]. Moreover, different studies specified that 
T2D-induced dyslipidemia increases the occurrence of 
depression by augmenting inflammatory disorders and 
reduce brain serotonin (5HT) [34–37]. These findings 
indicated that T2D increases depression risk by numer-
ous mechanisms including oxidative stress, low-grade 
inflammatory status, dysregulation of brain glucose 
metabolism and brain IR.

On the other hand, epidemiological data suggests a 
bidirectional relationship between T2D and depression 
[38]. Depression is associated with unhealthy behaviors, 
such as a poor diet and sedentary lifestyle, increased 
activity of the HPA, stress hormones, and pro-inflamma-
tory cytokines [39]. Depressive co-morbidity can result 
in serious consequences, such as poor glycemic control, 
poor adherence to medical treatment, higher rates of 
cardiac mortality [40]. It has been revealed that patients 
with depression increase the risk for the development of 
obesity and dyslipidemia which increase cardiovascular 
complications [34]. Nonetheless, dyslipidemia is associ-
ated with the severity of depressive symptoms [35]. The 
potential risk for developing T2D in depressed patients 
is greater compared the risk of progression depression in 
T2D [41]. It has been revealed that depression enhances 
diabetic complications [42]. A systematic review and 
meta-analysis showed that depression in T2D patients 
is associated with an increased risk of incident macro-
vascular and microvascular complications [42]. A pop-
ulation-based study included 38,537 T2D patients with 
depression compared to 155,148 T2D patients without 
depression discovered that depression increases the risk 
of T2D complications and mortality [43].

The underlying mechanisms for the development 
of T2D in depression are multifactorial comprising 
unhealthy diet and life style, smoking, and loss of physi-
cal activity [44]. Furthermore, autonomic dysfunction, 
systemic inflammation, and dysregulation of HPA axis in 
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depression contribute in the development of T2D [45]. 
Certainly, depression augments the risk for the devel-
opment of metabolic complications including hyper-
glycemia and dyslipidemia due to chronic stress and 
hypercortisolism which disturbed immune system and 
synaptic plasticity [45]. These observations indicated a 
bidirectional association between depression and T2D 
[Fig. 1].

Therefore, management of depression by antidepres-
sant agents improves glucose homeostasis and decreases 
glycated hemoglobin [46]. Particularly, use of anti-
depressant fluoxetine improved glycemic indices and 
body weight in depressed patients [46]. In vitro study 
established that fluoxetine modulates the activity of pan-
creatic β cells [47]. However, many studies revealed that 
prolong use of antidepressant drugs increase the risk for 
the development of T2D [48–50]. Herein, there is strong 
controversy regarding the use of antidepressant drugs in 
T2D. Therefore, this review try to elucidates the potential 
effect of antidepressant drugs in T2D regarding their det-
rimental and beneficial effects.

Depression overview
Depression is a potentially life threatening disorder that 
affects hundreds of millions of people all over the world. 
It can occur at any age from childhood to late life and is a 
tremendous cost to society as this disorder causes severe 
distress and disruption of life and, if left untreated, can be 
fatal [51]. Depression is a mood disorder characterized 
by suicidal beliefs and desperateness. Depression affects 
3.5% of general population [51]. Depression and related 
symptoms could be part of other mood disorders such 
as major depressive disorders [51, 52]. It affects female 
more than male in a ratio of 5:2 [52]. Depression involves 
a triad of symptoms including depressed mood, fatigue, 
and anhedonia as well as other symptoms such as sleep 
disorders and autonomic dysfunction-mediated gastro-
intestinal disturbances [53]. According to the etiology, 
depression is classified as endogenous depression due 
to genetic factors, or reactive depression due to exter-
nal stimuli [54]. The risk factors for the development of 
depression are multifactorial such as stressful life events 
[55], borderline personality disorders [56], chronic use of 
sedative and hypnotics, and as adverse effects for long-
term use of β-blockers, antipsychotic drugs, and isotreti-
noin [57, 58]. Furthermore, psychiatric disorders such as 
bipolar disorders, major depressive episodes, and sea-
sonal affected disorders increase the risk for the develop-
ment of depression [59]. Also, non-psychiatric disorders 
such as hypothyroidism [60], Cushing disease [61], Par-
kinson disease [62], and multiple sclerosis [63] augment 
frequency and incidence of depression.

Pathophysiology of depression
Monoamine theory
The pathophysiology of depression is related to the defi-
ciency of serotonin (5HT) which derived from trypto-
phan (Trp). 5HT is released into synaptic cleft to act 
on the post-synaptic 5HT receptors and on pre-syn-
aptic 5HT1A receptors which act as autoreceptor [64]. 
Consequently, increasing the expression of 5HT1A 
autoreceptors (which inhibit the release of 5HT from 
presynaptic neurons), and reduction of 5HT1A hetero-
receptors (which mediate action of 5HT at postsynaptic 
neurons) are intricate in the pathogenesis of depression. 
This effect induces upregulation of N-methyl-D-aspar-
tate (NMDA) and amino-methyl propionic acid (AMPA) 
receptors leading to reducing of brain-derived neutro-
phic factor (BDNF) and reduction of neuronal plasticity 
[64]. In sum, 5HT neurotransmission is highly reduced in 
depression [Fig. 2].

The first major hypothesis of depression was formu-
lated about 50 years ago and proposed that the main 
symptoms of depression are due to a functional defi-
ciency of the brain monoaminergic neurotransmitters 
including norepinephrine (NE), 5-HT, and dopamine 

Fig. 1 The link between depression and T2D: Biological burden such 
as central insulin resistance, and psychological burden such as disability in 
diabetes increase risk of depression. Inflammation and increase the activ-
ity of hypothalamic-pituitary-adrenal (HPA) axis in depression increase risk 
for diabetes
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[65, 66]. Monoamine theory suggested that reduction 
monoamines in the limbic system were involved in the 
pathogenesis of depression [65, 66]. Monoamine system 
is correspondingly affected by other factors such as vaso-
pressin, corticotrophic hormone (CRH), neuropeptide Y, 
neurotrophic factors, and pro-inflammatory cytokines 
[67]. Therefore, restoration of monoamines in the limbic 
system by antidepressants is regarded as a cornerstone in 
the management of depression. However, the pathogen-
esis of depression is complex concerning more than one 
arm, for example neuroimmune and neuroendocrine are 
also involved in this concept [64].

Many attempts have been made to prove the hypoth-
esis of reduced monoamine availability by measure-
ment of neurotransmitters and/or their metabolites in 
postmortem brain tissues and body fluids, such as cere-
brospinal fluid (CSF), blood, and urine [68]. Although 
repeated data showing decreased levels of the NE 
metabolite which indicates NE turnover in brain, sup-
port the hypothesis of a deficient noradrenergic system 
[69]. Likewise, determinations of 5-HT and its metabo-
lite 5-hydroxyindoleacetic acid (5-HIAA) could not 
prove the hypothesis of reduced serotonergic transmis-
sion [70]. However, many studies reported decreased 
central serotonergic turnover in depression [70, 71] but 
findings also suggested that reduced 5-HT function may 
not be present in all depressed patients [72]. These con-
tradictions between studies may imitate both method-
ological problems, such as difficulties in measuring the 
amines after various postmortem delays, and the fact that 

determinations of neurotransmitters were not specific in 
restricted brain regions [73].

Moreover, transporter proteins have a crucial role in 
monoaminergic transmission; they reduce the availabil-
ity of neurotransmitters in the synaptic cleft and accord-
ingly terminate the effect of the neurotransmitters on 
pre-synaptic and postsynaptic receptors [74, 75]. Though, 
the 5-HT transport system is not restricted to tissues of 
the CNS, but is also present in human platelets [74, 76]. 
Diverse substances have been used to measure the active 
uptake of 5-HT which reduced in major depression, a 
finding that was not observed in other psychiatric disor-
ders [77–79].

Inflammatory theory
It has been shown that inflammation contributes in the 
pathogenesis of depression, the inflammatory immune 
response and cytokine levels have been associated with 
both depression and fatigue in a large body of literature 
across different disorders [80]. A clinical study found that 
patients who suffered from depression after interferon 
alpha (IFN-α) treatment had a significantly higher risk 
of having recurrent depressive episodes, which suggests 
that these mood changes are not a transient phenomenon 
but more similar to normal recurrent depressive episodes 
[81]. A previous meta-analysis had shown an increase 
in pro-inflammatory cytokines in people suffering from 
depression [82]. At a cellular level changes with TNF-α 
induce release of glutamate by activated microglia in 
vitro, leading to neuronal excitotoxicity [83]. Type I IFN 

Fig. 2  A) Pathophysiology of depression: Tryptophan (Trp) is converted to 5-hyroxytryptamine (5HT). Over-expression of pre-synaptic 5HT1A which 
inhibit the release of 5HT from presynaptic neurons or down-regulation of 5HT1A heteroreceptors which mediate action of 5HT at postsynaptic neurons, 
leading to the reduction of glutamate (Glu) and upregulation of N-methyl-D-aspartate (NMDA) receptors and upregulation of amino-methyl propionic 
acid (AMPA) receptors. These changes reduce expression of brain-derived neutrophic factor (BDNF) and impairment of neuronal plasticity. B) How insulin 
modulates the effect of 5-HT at the molecular level: insulin by binding to insulin receptors results in increase in the synthesis of BDNF and neuronal 
plasticity as mediated through protein kinase B and its action on m-TOR (mechanistic target of rapamycin) and glycogen synthase kinase 3
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acts through the IFN receptor chain 1 pathway in mouse 
BBB epithelial cells to cause impairment of long-term 
potentiation in hippocampal neurons in vivo, leading to 
depressive-like behaviors [84]. These changes suggest 
a potential mechanism for the immune system’s role in 
inducing neurological and psychological symptoms even 
in the absence of an altered BBB integrity.

Cytokines have been found to influence almost every 
pathway involved in the pathogenesis of depression 
including alterations to the expression of neurotransmit-
ters, neuroendocrine function, synaptic plasticity, and 
basal ganglia [85]. The similarities between cytokine-
induced sickness behavior and depression further sup-
port a role of inflammation in depression as well as the 
anti-inflammatory effects of successful antidepressant 
treatment [86].Accumulating evidence supports an asso-
ciation between depression and inflammatory processes, 
a connection that seems to be bidirectional [87]. Clini-
cal studies indicated antidepressant treatment effects 
for anti-inflammatory agents, both as add-on treatment 
and as monotherapy. In particular, nonsteroidal anti-
inflammatory drugs (NSAIDs) and cytokine-inhibitors 
have shown antidepressant treatment effects compared 
to placebo, but also statins, poly-unsaturated fatty acids, 
pioglitazone, minocycline, modafinil, and corticosteroids 
may yield antidepressant treatment effects [85–87]. The 
pro-inflammatory cytokines, in addition to activating 
the HPA axis and thereby increasing cortisol synthesis, 
also activate the tryptophan–kynurenine pathway [85]. 
This results in the synthesis of the neurotoxic NMDA 
glutamate agonist quinolinic acid and 3-hydroxykyn-
urenine thereby enhancing oxidative stress and contrib-
utes to neurodegeneration which characterize major 
depression particularly in late life [86]. While antide-
pressants attenuate some of the endocrine and immune 
changes caused by inflammation, not all therapeutically 
effective antidepressants do so [87]. This suggests that 
drugs which specifically target the immune, endocrine 
and neurotransmitter systems may be more effective 
antidepressants.

However, the complexity of the inflammatory cascade, 
limited clinical evidence, and the risk for side effects 
stress cautiousness before clinical application. Thus, 
despite proof of concept studies of anti-inflammatory 
treatment effects in depression, important challenges 
remain to be investigated.

Neuroendocrine theory
Notably, depression may develop due to neuroendo-
crine disturbances [88, 89]. Development of depression is 
associated with the body’s response to prolonged stress, 
which adversely affects the functioning of the nervous, 
endocrine and immune systems [90–95]. Prolonged 

stress can lead to the reduction of concentration of brain-
derived neurotrophic factor (BDNF), resulting in impair-
ment of neurogenesis and synaptic remodeling process 
[88]. The neuroendocrine dysregulation induces changes 
in monoaminergic systems and depression development 
[96–102]. There is a growing body of research examin-
ing neurobiological factors associated with the course of 
depression in adults. In particular, the HPA system has 
been studied quite extensively in relation to the patho-
physiology and clinical course of depression, based on 
the theory that the HPA axis mediates the effects of stress 
on emotional, cognitive, and behavioral responses [103]. 
Studies over the last 40 years have demonstrated that 
hyperactivity of the HPA axis is one of the most consis-
tent biological findings in major depression psychiatry, 
but the mechanisms underlying this abnormality are 
still unclear [103]. Major alterations of the HPA axis that 
can be reversed by successful antidepressant therapy are 
often seen in depressed patients. Persuasive evidence 
points to the involvement of a dysfunctional glucocor-
ticoid receptor (GR) system in these changes. Support 
for this also comes from studies of transgenic mice that 
express an antisense RNA, complementary to the GR 
mRNA, and have numerous neuroendocrine characteris-
tics of human depression as well as altered behavior [96]. 
Many of these neuroendocrine and behavioral charac-
teristics of the transgenic mice can be reversed by anti-
depressants. A possible explanation for this is that the 
antidepressant-induced increase in GRs renders the HPA 
axis more sensitive to glucocorticoid feedback. This new 
insight into antidepressant drug action suggests a novel 
approach to the development of antidepressant drugs 
[96, 103].

These verdicts indicated that disruption of monoamine; 
neuroinflammatory changes and abnormal activation 
of HPA are involved in the pathogenesis of depression 
[Table 1].

Pharmacology of antidepressant drugs
General considerations
Imperative considerations in the choice of antidepres-
sants, their safety, and tolerability have been appraised. 
Before selective serotonin reuptake inhibitors (SSRIs), 
tricyclic antidepressants (TCAs) were the mainstay 
for treatment of depression. The TCAs were largely 
replaced by SSRIs from 1990s with the hope that SSRIs 
would be more effective and safer than TCAs [104]. 
Studies primarily supported this hypothesis signifying 
that, although SSRIs do not differ from TCAs in effi-
cacy, they have superior side effect profiles such as less 
anticholinergic symptoms [105]. Nevertheless, safety 
and tolerability concerns related to the newer genera-
tion of antidepressants including SSRIs and selective 
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serotonin-norepinephrine reuptake inhibitors (SNRIs) 
have increased with recent research [106]. Furthermore, 
side effects which are more specific to serotonin or NE 
also have become a concern [104–106]. Basically, all 
antidepressant treatments have proven to increase the 
expression of BDNF mRNA and BDNF protein levels 
[107].

Antidepressants promote BDNF signaling through 
activation of TrkB (tropomyocin receptor kinase B) [108]. 
Antidepressants constantly increase the activation of 
phospholipase γ-1 (PLCγ-1) pathway, but the activation 

of extracellular signal regulated kinase (Erk) pathway has 
also been reported to be activated [109].

Indications and mechanism of action
Antidepressant drugs are used in the management of 
depression, panic disorder, anxiety disorder, addiction, 
peripheral neuropathy, and chronic pain. Principally, 
antidepressants act via inhibition the re-uptake of dopa-
mine, 5HT, and NE, and through modulation of mono-
amine receptors and enzymes [67, 110–112] [Fig.  3] 
[Table 2].

Table 1 Pathophysiology of depression
Mechanisms Findings Ref.
Monoamine theory Reduction monoamines (dopamine, 5HT, and noradrenaline) in the limbic system.

Deficiency of noradrenergic system in depression.
Decrease of central serotonergic turnover in depression.
Transport proteins of monoaminergic transmissions are increased in depression.
Inflammation contributes in the pathogenesis of depression.

Fasipe et al. [65], Ogłodek et al. [66]
Li et al. [69]
Borroto-Escuela [70]., Wang et al. 
[71].
Kayabaşı et al. [74].
Dowlati et al. [80].

Inflammatory 
theory

Depression is increased after interferon alpha (IFN-α) treatment.
Pro-inflammatory cytokine levels are increased in patients with depression.
Type I INF induces depression.
Prolonged stress reduces concentration of brain-derived neurotrophic factor (BDNF).

Chiu et al. [81].
Petralia et al. [82].
Blank et al. [84].
Horowitz et al. [88].

Neuroendocrine 
theory

The neuroendocrine dysregulation induces changes in monoaminergic systems.
Hypothalamic-pituitary-adrenal (HPA) axis is activated in depression.

Keller et al. [96].
Yu et al. [103].

Table 2 Mechanism of action of antidepressant [112]
Class Example Mechanism of action
SSRIs Fluoxetine, fluvoxamine Inhibit reuptake of 5HT.
NRIs Atomoxetine, reboxetine Inhibit reuptake of NE.
SNRIs Venlafaxine, duloxetine Inhibit reuptake of NE and 5HT.
DNRIs Bupropion Inhibit reuptake of NE and dopamine.
TCA Imipramine and amitriptyline Inhibit reuptake of norepinephrine and 

5HT with minimal effect on dopamine, 
antagonists for muscarinic and H1 
receptors, agonists for sigma receptors.

SMs Vortioxetine, vilazodone Inhibit reuptake 5HT, modulation of 
5HT receptors

SARIs Trazodone, nefazodone Inhibit reuptake 5HT, block 5HT 
receptors.

MAOIs Moclobemide, selegiline Inhibit metabolism of monoamines.
NMDA-RA ketamine, esketamine Rapid-acting antidepressant, block 

NMDA glutamate receptors.
SSRI: selective serotonin re-uptake inhibitor, NRI: noradrenalin reuptake inhibitor, SNRI: serotonin noradrenalin reuptake inhibitors, DNRIs: dopamine, noradrenaline 
reuptake inhibitors, TCA: tricyclic antidepressant, SMs: serotonin modulators, SARIs: serotonin antagonist and reuptake inhibitors, MAOIs: monoamine oxidase 
inhibitors, NMDA-RA: N-Methyl-D–Aspartate receptor antagonists

Fig. 3 Mechanism of action of antidepressant
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The clinical effects of antidepressants take several 
weeks to manifest their clinical effects, suggesting that 
these drugs induce adaptive changes in brain structures 
affected by anxiety and depression [67, 111, 112]. Recent 
reports suggest that antidepressants can induce neu-
rogenesis in the adult brain, although the mechanisms 
involved are not evidently anticipated [113]. Despite a 
lack of investigation into neurogenesis and antidepres-
sant action, it is proposed that chronic administration 
of antidepressants can persuade the recruitment and 
integration of neurogenesis and, eventually, lead to the 
remission of depression [113]. Increasing the survival 
rate neurons can improve depressive-like behaviors and 
promote stress resilience. According to the neurogenic 
reserve hypothesis, hippocampal neurogenesis supports 
specific cortical functions in response to stressful situa-
tions [113]. Therefore, hippocampal neurogenesis may 
be a promising biological indicator of antidepressant 
response in patients with depression [113]. Of note, the 
5-HT1A receptor has been shown to mediated cell prolif-
eration and neurogenesis [114]. These observations indi-
cated that antidepressants have diverse and pleiotropic 
effects by regulating BDNF and neurogenesis.

Adverse effects
It has been shown that prolong use of antidepressant 
drugs are associated with development of many adverse 
effects [Table 3]. While tolerability might be considered 
different from side effects, the two could also be closely 
related because side effects from antidepressants are 
some of the most common factors responsible for the 
treatment discontinuation [116]. For example, up to 43% 
of patients with depressive disorder stopped taking anti-
depressants due to side effects [117]. Therefore, drop-
out rate and tolerability could be an important indirect 
hallmark of drug safety. A meta-analysis disclosed that 
SSRIs had significantly lower dropout rates and adverse 
events than TCAs [117]. Besides, a network meta-analy-
sis showed that SSRIs were better tolerated than TCAs in 
patients with depression [118].

Sexual dysfunction in patients with depression is very 
complex because it is associated with both the condition 

and the antidepressant used [119]. Despite the con-
troversy, antidepressant induced sexual dysfunction is 
an important concern because up to 80% of depressed 
patients from randomized clinical trials reported sexual 
side effects [120]. All antidepressants are known to cause 
sexual dysfunction, though there are minor individual 
variations among these drugs, but no studies have estab-
lished that newer antidepressants have lower rates of 
sexual dysfunction than TCAs [119]. In contrast, a study 
exhibited that the antidepressants with high serotonin 
selectivity such as citalopram, fluoxetine, paroxetine, 
sertraline, and venlafaxine have the highest rates of total 
sexual dysfunction. Even though imipramine exhibited 
significantly higher sexual dysfunction than placebo, 
the rate was lower than the other antidepressants [121]. 
Nevertheless, an antidepressant bupropion which has no 
serotonergic effect but dopaminergic effect had a lower 
risk of sexual dysfunction than other second generation 
antidepressants [122–124].

Other most important adverse effect of antidepres-
sants is weight gain which was reported in different types 
of antidepressants. Early studies have suggested that 
newer antidepressants, SSRIs, and SNRIs still have a risk 
of weight gain, but mirtazapine have less risk of causing 
weight gain than TCAs [125]. It was commonly known 
that paroxetine has a higher risk of weight gain amongst 
the SSRIs, and amitriptyline was thought to cause the 
most potent weight gain among TCAs [125].

Pharmacokinetic profile
Regarding the pharmacokinetic profile of antidepres-
sant agents, most of these drugs have comparable phar-
macokinetic variables [Table  4]. Newer antidepressants 
share several common features, such as a good absorp-
tion from the gastrointestinal tract, CYP-mediated 
metabolism, or an extensive tissue distribution, whereas 
the occurrence of non-linearity or stereo-selectivity in 

Table 3 Adverse effects of antidepressant drugs [115]
Antidepressant agents Adverse effects
General Increases risk of T2D, suicidal 

thoughts, sexual dysfunction.
TCA Weight gain, increase appetite.
SSRIs Weight loss, serotonin syndrome, 

discontinuation syndrome.
SNRIs Seizure
SARIs Hepatotoxicity and priapism.
No-selective MAOIs Hypertensive crisis.

Table 4 Pharmacokinetic variables of antidepressant drugs [126, 
127]
Variables The characteristics
Bioavailability Most of them have moderate to high bioavailabil-

ity, with exception of mainserin, and lofepramine 
have low bioavailability.

T1/2 life Most of them have short half-life with exception of 
vortioxetine and fluoxetine have half-life > 50 hrs.

Volume of 
distribution

Low

Protein binding High, both of levomilnacipran and milnacipran 
have low

Excretion Urine, and less by urine and feces
Enzyme inhibitors Fluoxetine and fluvoxamine are strong enzyme 

inhibitors, though other antidepressant drugs are 
none to mild enzyme inhibitors.
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pharmacokinetics, duration of elimination half-life, and 
pharmacological activity of metabolites are drug-specific 
[128]. They are poor substrates of p-glycoprotein and 
have a low potential for drug–drug interactions at thera-
peutic doses when co-administered with p-glycoprotein 
modulators [129]. However, the newest antidepressants 
such as levomilnacipran and vilazodone rarely require 
dosage adjustment in special populations as in the elderly 
and patients with liver diseases [130]. Furthermore, the 
available data do not clearly suggest that substantial ben-
efits may be obtained from routine monitoring of plasma 
levels of newer antidepressants [129, 130].

Antidepressants and T2D
Antidepressants are one of most frequently used medi-
cations prescribed not only for depression but also for 
other medical disorders including painful peripheral 
neuropathy, chronic pain syndrome, postmenopausal 
disorders, and fibromyalgia [131–133]. Use of TCA is 
associated with weight gain and cardiotoxicity [134]. In 
addition, long-term use of antidepressants is linked with 
development of T2D [135]. A cohort study showed that 
postmenopausal women with elevated depressive symp-
toms who also use antidepressants have a greater risk of 
developing incident diabetes. In addition, longstanding 
elevated depressive symptoms and recent antidepres-
sant medication use increase the risk of incident diabe-
tes [135]. However, prolong use of antidepressants can 
reduce mortality in T2D patients [136]. Thus, antidepres-
sants have dual effects may be detrimental or beneficial 
on T2D.

Detrimental effects
It has been shown that prolong use of antidepressants 
mainly TCA and SSRIs are associated with high T2D risk 
[48]. A preclinical study demonstrated that sertraline 
promotes pancreatic β cells injury and apoptosis [137]. 
SSRIs increase T2D risk by inducing dysregulation of 
HPA axis and development of IR [138]. A case control 
study involved 165,958 depressed patients on antide-
pressant drugs without T2D at time of the study dem-
onstrated that use of antidepressant drugs > 2 years was 
linked with increased T2D risk by 84% (rate ratio = 1.84, 
95%CI = 1.35–2.52) [48]. Continuous use of antidepres-
sants over duration of 3.2 years was associated with 
increased T2D risk by 2.60 [49, 139]. However, short-
term use of antidepressant drugs was not associated with 
T2D risk. A cross-sectional study included 25,315 sub-
jects showed that long-term use of SSRIs is associated 
with abdominal obesity, hypercholesterolemia, and T2D 
risk [140].

Various mechanisms are proposed for increasing T2D 
risk due to prolonged use of antidepressants including 

development of weight gain by TCA [141]. Despite that 
SSRIs reduce body weight; paroxetine was reported to 
increase body weight [142]. In addition, depression is 
regarded as a cofounding factor in patients received anti-
depressants that may increase T2D risk. Consequently, 
management of depression by antidepressant agents 
improves glucose homeostasis and decreases glycated 
hemoglobin [46]. Of note, antidepressants affect the 
HPA axis leading to increase cortisol and development 
of IR [138]. In vitro study demonstrated that SSRIs ser-
traline and paroxetine inhibit insulin receptor substrate-1 
(IRS-1) and insulin signaling leading to IR [138]. This 
inhibition correlated with a rapid phosphorylation and 
activation of a number of Ser/Thr IRS-1 kinases includ-
ing c-Jun kinases (JNK) mitogen-activated protein kinase 
(MAPK) [138]. JNK appears as a key player activated by 
SSRIs because specific JNK inhibitors partially eliminated 
the effects of these drugs [138]. These findings implicate 
selected SSRIs as inhibitors of insulin signaling and as 
potential inducers of IR [138].

TCA-induced inhibition reuptake of NE causes induc-
tion of glycogenolysis and gluconeogenesis [143]. Besides, 
TCA by blocking muscarinic receptor 3 (M3) and alpha-
adrenergic (α-1AD) receptor attenuates insulin release 
and induce hyperglycemia [138]. The insulinotropic effect 
of ACh results from two mechanisms: one involves a rise 
in Ca2+ and the other involves a marked, protein kinase 
C (PKC) mediated increase in the efficiency of Ca2+ on 
exocytosis [144]. A cohort study included 23 non-T2D 
depressed patients assigned to 11 patients on maproti-
line and 12 patients on fluoxetine showed that maproti-
line increased body weight and reduce insulin sensitivity 
as compared to fluoxetine [145, 146]. Therefore, TCA 
maprotiline leads to more deleterious effects on glucose 
homeostasis as compared to SSRI fluoxetine. Support-
ing to this finding, TCA nortriptyline exacerbates glucose 
dyshomeostasis in T2D patients [147]. However, SSRI 
fluoxetine had not associated with detrimental effects but 
is linked with symptomatic hypoglycemia [148]. These 
findings suggest that antidepressants lead to detrimen-
tal effects on glucose homeostasis and insulin sensitivity 
with increasing risk for the development of T2D.

Beneficial and neutral effects
It has been shown that use of antidepressant drugs is 
not associated with increasing T2D risk [149]. Of note, 
SSRI paroxetine improves blood glucose in diabetic mice 
by enhancing insulin sensitivity [150]. In addition; fluox-
etine has beneficial effects by regulating glycemic indices 
and lipid profile in T2D patient with depression [151]. A 
meta-analysis involved 5 randomized, placebo-controlled 
trials showed that short period of fluoxetine therapy can 
lead to weight loss as well as reduction of HbA1c and 
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triglyceride in T2D patients [151]. A retrospective study 
included 60,516 subjects revealed that antidepressants 
use was not linked with high T2D risk [149]. Fluoxetine 
enhances glycogen synthase activity, improves insulin 
sensitivity and regulation of insulin secretion indepen-
dent of weight loss effect [151, 152]. Notably, six weeks 
administration of SSRI fluoxetine in healthy volunteers 
and T2D patients improves neuroendocrine and auto-
nomic nervous system (ANS) counter-regulatory mech-
anisms during hypoglycemia [153, 154]. This finding 
proposes that 5HT transmission is essential in the regu-
lation of sympathetic drive during hypoglycemia. Gluca-
gon response to acute hypoglycemia in T2D patients is 
lost within 5 years from onset of T2D [155]. Therefore, 
sympathetic drive remains the only defense mechanism 
against hypoglycemia in T2D patients.

Furthermore, different clinical studies observed that 
citalopram produced neutral or beneficial effects on T2D 
risk [156, 157]. For example, short-term effect of citalo-
pram did not affect glucose homeostasis and insulin sen-
sitivity in women with depression [156]. Likewise, use 
of escitalopram in T2D patient with depression did not 
affect blood glucose and HbA1c [157]. However, many 
studies reported that citalopram improves blood glu-
cose and HbA1c in T2D patient with depression [158, 
159]. Amelioration of glucose indices in T2D patient 
with depression treated by citalopram could be due to 
attenuation of depression-induced dysglycemic effect 
or due to the direct effect of citalopram. The beneficial 
effect of citalopram in regulating of blood glucose and 
IR is by controlling HPA. Also, citalopram has direct 
anti-inflammatory and antioxidant effects by which can 
improve blood glucose [160, 161]. Moreover, milnacip-
ran regulated blood glucose and HbA1c in T2D patient 
with depression [162, 163]. Furthermore, antidepres-
sant mirtazapine despite of increase the body weight in 
depressed patients; it either has a neutral effect on glu-
cose homeostasis [164] or improves glucose tolerance in 
T2D patients with depression [165]. The beneficial effect 
of mirtazapine is related to the improvement of pancre-
atic β cell function [166].

Additionally, treatment with NRI and 5HT2 receptor 
antagonist nefazodone for eight weeks results in weight 
loss and hypoglycemia [167]. Likewise, a novel antide-
pressant agomelatine which acts as agonist for melato-
nin receptor and antagonist for 5HT2 receptor reduced 
body weight, normalize blood glucose and lipid profile 
in patients with depression [168]. Similarly, bupropion 
alone or in combination with naltrexone improve gly-
cemic indices and body weight in T2D patients with 
depression [169]. A dual SNRI antidepressant duloxetine 
which approved in the management of diabetic periph-
eral neuropathy had neutral effect on blood glucose in 

T2D patients [170, 171]. Furthermore, a specific inhibi-
tor of 5HT uptake into presynaptic neurons sertraline is 
more effective antidepressant drug as compared to other 
antidepressants [172]. A randomized, double blind, pla-
cebo controlled clinical trial illustrated that sertraline 
regulate blood glucose and HbA1c in T2D patients with 
depression [173]. Sansone et al. [174] reported that SSRIs 
improve glucose indices by increasing insulin sensitivity 
and insulin release via 5HT-dependent pathway. Though, 
the author at the same time revealed a case report of T2D 
women on sertraline developed hyperglycemia [174]. 
Experimental studies confirmed that sertraline improved 
blood glucose in diabetic mice [175, 176].

The beneficial effect of SSRIs in T2D is related to the 
regulation of 5HT level which regulates insulin secretion 
from pancreatic β cells [177, 178]. Interestingly, 5HT in 
the pancreatic β cells acts as the main downstream of 
lactogen to increase proliferation of pancreatic β cells 
during pregnancy [179]. Inhibition of pancreatic 5HT 
induces glucose intolerance and reduces mass of pancre-
atic β cells during pregnancy [179, 180]. Moon and his 
colleagues revealed that lactation enhances pancreatic β 
cell mass and function via 5HT pathway [181]. Enhancing 
of 5HT within pancreatic β cells by SSRIs could a possi-
ble mechanistic pathway for the beneficial effect of these 
agents in T2D.

On the other hand, dopamine in the pancreatic β cells 
modulates insulin secretion and maintenance of these 
cells [182]. A preclinical study conducted by Farino et al., 
[183] observed that dopamine plays an important role in 
the regulation of pancreatic β cell function and inhibition 
of dopamine receptor by antipsychotic trigger the devel-
opment of metabolic derangements. Pancreatic β cells 
have full machinery for synthesis and store of dopamine 
which modulate insulin secretion [184]. Thus, modu-
lation of dopamine by antidepressants may improve 
insulin secretion. However, NE in the pancreatic β cells 
through activation of α-2 adrenergic inhibits insulin 
release and glucose stimulated mediated insulin sensitiv-
ity [185]. Therefore, increasing of NE by certain types of 
antidepressants induce dysfunction of pancreatic β cells. 
Therefore, the beneficial effects of antidepressant in T2D 
patients are related to the specific effect of antidepressant 
drug.

Taken together, antidepressant drugs have dual effects 
on the pathogenesis of T2D, might be beneficial or det-
rimental [Fig. 4]. According to the assorted view of pre-
ponderance, antidepressant drugs seem to have beneficial 
or neutral effects rather than detrimental effect. Preclini-
cal and large-scale prospective studies regarding class-
specific effect of antidepressant drugs are warranted in 
this regard.
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Conclusions
Growing evidences have illustrated a potential asso-
ciation between T2D and depression. Therefore, use of 
antidepressants in T2D patients for comorbid depres-
sion or for painful peripheral neuropathy is common. 
However, antidepressants may have detrimental or ben-
eficial effects on glucose indices and insulin sensitivity. 
In addition, prolong use of antidepressants in patients 
with depression may increase T2D risk. The underlying 
mechanisms for the development of T2D are not well 
elucidated. Most of studies that implicate antidepres-
sants in the development of T2D were cross-sectional 
with small sample size and short duration. Of interest, 
the beneficial and detrimental effects of antidepressants 
in T2D patients with depression may relate to the sever-
ity of depression which affects insulin sensitivity and glu-
cose homeostasis. Nevertheless, findings from published 
preclinical and clinical studies indicated that SSRIs are 
more beneficial compared to other antidepressant types 
on insulin sensitivity and glucose homeostasis in T2D 
patients with depression. Taken together, SSRIs are bene-
ficial whereas other antidepressant types are detrimental 
on insulin sensitivity and glycemic indices. This review 
cannot give this final conclusion, therefore class-depen-
dent effect of antidepressants in patients with depression 
should be evaluated in large-scale prospective studies.
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